Full Text:   <912>

Summary:  <313>

Suppl. Mater.: 

CLC number: 

On-line Access: 2022-06-08

Received: 2021-12-26

Revision Accepted: 2022-03-03

Crosschecked: 2022-06-08

Cited: 0

Clicked: 989

Citations:  Bibtex RefMan EndNote GB/T7714


Wenqing ZHANG


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2022 Vol.23 No.6 P.515-527


Functional characterization of piggyBac-like elements from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)

Author(s):  Jun LYU, Qin SU, Jinhui LIU, Lin CHEN, Jiawei SUN, Wenqing ZHANG

Affiliation(s):  State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China

Corresponding email(s):   lsszwq@mail.sysu.edu.cn

Key Words:  Nilaparvata lugens, piggyBac-like elements, Transposon, NlPLE25

Jun LYU, Qin SU, Jinhui LIU, Lin CHEN, Jiawei SUN, Wenqing ZHANG. Functional characterization of piggyBac-like elements from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)[J]. Journal of Zhejiang University Science B, 2022, 23(6): 515-527.

@article{title="Functional characterization of piggyBac-like elements from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)",
author="Jun LYU, Qin SU, Jinhui LIU, Lin CHEN, Jiawei SUN, Wenqing ZHANG",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Functional characterization of piggyBac-like elements from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)
%A Jun LYU
%A Qin SU
%A Jinhui LIU
%A Jiawei SUN
%A Wenqing ZHANG
%J Journal of Zhejiang University SCIENCE B
%V 23
%N 6
%P 515-527
%@ 1673-1581
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2101090

T1 - Functional characterization of piggyBac-like elements from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)
A1 - Jun LYU
A1 - Qin SU
A1 - Jinhui LIU
A1 - Lin CHEN
A1 - Jiawei SUN
A1 - Wenqing ZHANG
J0 - Journal of Zhejiang University Science B
VL - 23
IS - 6
SP - 515
EP - 527
%@ 1673-1581
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2101090

PiggyBac is a transposable DNA element originally discovered in the cabbage looper moth (Trichoplusia ni). The T. ni piggyBac transposon can introduce exogenous fragments into a genome, constructing a transgenic organism. Nevertheless, the comprehensive analysis of endogenous piggyBac-like elements (PLEs) is important before using piggyBac, because they may influence the genetic stability of transgenic lines. Herein, we conducted a genome-wide analysis of PLEs in the brown planthopper (BPH) Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), and identified a total of 28 PLE sequences. All N. lugens piggyBac-like elements (NlPLEs) were present as multiple copies in the genome of BPH. Among the identified NlPLEs, NlPLE25 had the highest copy number and it was distributed on five chromosomes. The full length of NlPLE25 consisted of terminal inverted repeats and sub-terminal inverted repeats at both terminals, as well as a single open reading frame transposase encoding 546 amino acids. Furthermore, NlPLE25 transposase caused precise excision and transposition in cultured insect cells and also restored the original TTAA target sequence after excision. A cross-recognition between the NlPLE25 transposon and the piggyBac transposon was also revealed in this study. These findings provide useful information for the construction of transgenic insect lines.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]BaoWD, KojimaKK, KohanyO, 2015. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA, 6:11.

[2]BouallègueM, RouaultJ, Hua-VanA, et al., 2017. Molecular evolution of piggyBac superfamily: from selfishness to domestication. Genome Biol Evol, 9(2):323-339.

[3]CaryLC, GoebelM, CorsaroBG, et al., 1989. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology, 172(1):156-169.

[4]ChenCJ, ChenH, ZhangY, et al., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13(8):1194-1202.

[5]ChenJX, LiWX, LyuJ, et al., 2021. CRISPR/Cas9-mediated knockout of the NlCSAD gene results in darker cuticle pigmentation and a reduction in female fecundity in Nilaparvata lugens (Hemiptera: Delphacidae). Comp Biochem Physiol Part A Mol Integr Physiol, 256:110921.

[6]ChenQJ, LuoWT, VeachRA, et al., 2020. Structural basis of seamless excision and specific targeting by piggyBac transposase. Nat Commun, 11:3446.

[7]DaimonT, MitsuhiroM, KatsumaS, et al., 2010. Recent transposition of yabusame, a novel piggyBac-like transposable element in the genome of the silkworm, Bombyx mori. Genome, 53(8):585-593.

[8]ElickTA, LoboN, FraserMJ, 1997. Analysis of the cis-acting DNA elements required for piggyBac transposable element excision. Mol Gen Genet, 255(6):605-610.

[9]FraserMJ, SmithGE, SummersMD, 1983. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. J Virol, 47(2):287-300.

[10]FraserMJ, ClszczonT, ElickT, et al., 1996. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol, 5(2):141-151.

[11]GregoryM, AlpheyL, MorrisonNI, et al., 2016. Insect transformation with piggyBac: getting the number of injections just right. Insect Mol Biol, 25(3):259-271.

[12]HenssenAG, HenaffE, JiangE, et al., 2015. Genomic DNA transposition induced by human PGBD5. eLife, 4:e10565.

[13]Hua-VanA, le RouzicA, BoutinTS, et al., 2011. The struggle for life of the genome’s selfish architects. Biol Direct,6:19.

[14]HubleyR, FinnRD, ClementsJ, et al., 2016. The Dfam database of repetitive DNA families. Nucleic Acids Res, 44(D1):D81-D89.

[15]JacobsFMJ, GreenbergD, NguyenN, et al., 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature, 516(7530):242-245.

[16]JiaXH, PangXY, YuanYJ, et al., 2021. Unpredictable recombination of PB transposon in Silkworm: a potential risk. Mol Genet Genomics, 296(2):271-277.

[17]KeithJH, SchaeperCA, FraserTS, et al., 2008. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. BMC Mol Biol, 9:73.

[18]le RouzicA, BoutinTS, CapyP, 2007. Long-term evolution of transposable elements. Proc Natl Acad Sci USA, 104(49):19375-19380.

[19]LiC, BrantE, BudakH, et al., 2021. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(4):253-284.

[20]LorenzenMD, BerghammerAJ, BrownSJ, et al., 2003. piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol, 12(5):433-440.

[21]LuoGH, WuM, WangXF, et al., 2011. A new active piggyBac-like element in Aphis gossypii. Insect Sci, 18(6):652-662.

[22]LuoGH, LiXH, HanZJ, et al., 2014. Molecular characterization of the piggyBac-like element, a candidate marker for phylogenetic research of Chilo suppressalis (Walker) in China. BMC Mol Biol, 15:28.

[23]ReikW, 2007. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447(7143):425-432.

[24]Sanchez-LuqueFJ, MJHCKempen, GerdesP, et al., 2019. LINE-1 evasion of epigenetic repression in humans. Mol Cell, 75(3):590-604.E12.

[25]SarkarA, SimC, HongYS, et al., 2003. Molecular evolutionary analysis of the widespread piggyBac transposon family and related “domesticated” sequences. Mol Genet Genomics, 270(2):173-180.

[26]SlotkinRK, MartienssenR, 2007. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet, 8(4):272-285.

[27]SunZC, WuM, MillerTA, et al., 2008. piggyBac-like elements in cotton bollworm, Helicoverpa armigera (Hübner). Insect Mol Biol, 17(1):9-18.

[28]WangJ, RenX, MillerTA, et al., 2006. piggyBac-like elements in the tobacco budworm, Heliothis virescens (Fabricius). Insect Mol Biol, 15(4):435-443.

[29]WangJ, MillerED, SimmonsGS, et al., 2010. piggyBac-like elements in the pink bollworm, Pectinophora gossypiella. Insect Mol Biol, 19(2):177-184.

[30]WangJJ, DuYZ, WangSZ, et al., 2008. Large diversity of the piggyBac-like elements in the genome of Tribolium castaneum. Insect Biochem Mol Biol, 38(4):490-498.

[31]WuCX, WangS, 2014. PLE-wu, a new member of piggyBac transposon family from insect, is active in mammalian cells. J Biosci Bioeng, 118(4):359-366.

[32]XuHF, XiaQY, LiuC, et al., 2006. Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori. Mol Genet Genomics, 276(1):31-40.

[33]XueWH, XuN, YuanXB, et al., 2018. CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Biochem Mol Biol, 93:19-26.

[34]ZhaoY, HuangG, ZhangWQ, 2019. Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens‍. Insect Biochem Mol Biol, 115:103246.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE