CLC number: TP391.4
On-line Access: 2012-07-06
Received: 2011-11-18
Revision Accepted: 2012-03-29
Crosschecked: 2012-05-31
Cited: 1
Clicked: 7079
Yan Gui, Li-zhuang Ma, Chao Yin, Zhi-hua Chen. Preserving global features of fluid animation from a single image using video examples[J]. Journal of Zhejiang University Science C, 2012, 13(7): 510-519.
@article{title="Preserving global features of fluid animation from a single image using video examples",
author="Yan Gui, Li-zhuang Ma, Chao Yin, Zhi-hua Chen",
journal="Journal of Zhejiang University Science C",
volume="13",
number="7",
pages="510-519",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1100342"
}
%0 Journal Article
%T Preserving global features of fluid animation from a single image using video examples
%A Yan Gui
%A Li-zhuang Ma
%A Chao Yin
%A Zhi-hua Chen
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 7
%P 510-519
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1100342
TY - JOUR
T1 - Preserving global features of fluid animation from a single image using video examples
A1 - Yan Gui
A1 - Li-zhuang Ma
A1 - Chao Yin
A1 - Zhi-hua Chen
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 7
SP - 510
EP - 519
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1100342
Abstract: We synthesize animations from a single image by transferring fluid motion of a video example globally. Given a target image of a fluid scene, an alpha matte is required to extract the fluid region. Our method needs to adjust a user-specified video example for producing the fluid motion suitable for the extracted fluid region. Employing the fluid video database, the flow field of the target image is obtained by warping the optical flow of a video frame that has a visually similar scene to the target image according to their scene correspondences, which assigns fluid orientation and speed automatically. Results show that our method is successful in preserving large fluid features in the synthesized animations. In comparison to existing approaches, it is both possible and useful to utilize our method to create flow animations with higher quality.
[1]Barrett, W.A., Cheney, A.S., 2002. Object-Based Image Editing. SIGGRAPH, p.777-784.
[2]Bhat, K.S., Seitz, S.M., Hodgins, J.K., Khosla, P.K., 2004. Flow-based video synthesis and editing. ACM Trans. Graph., 23(3):360-363.
[3]Brostow, G.J., Essa, I., 2001. Image-Based Motion Blur for Stop Motion Animation. SIGGRAPH, p.561-566.
[4]Brox, T., Malik, J., 2011. Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell., 33(3):500-513.
[5]Brox, T., Bruhn, A., Papenberg, N., Weickert, J., 2004. High Accuracy Optical Flow Estimation Based on a Theory for Warping. 8th European Conf. on Computer Vision, p.25-36.
[6]Chuang, Y.Y., Goldman, D.B., Zheng, K.C., Curless, B., Salesin, D.H., Szeliski, R., 2005. Animating pictures with stochastic motion textures. ACM Trans. Graph., 24(3):853-860.
[7]Corpetti, T., Memin, E., Perez, P., 2002. Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell., 24(3):365-380.
[8]Courty, N., Corpetti, T., 2007. Crowd motion capture. Comput. Anim. Virt. Worlds, 18(4-5):361-370.
[9]Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S., 2003. Dynamic textures. Int. J. Comput. Vis., 51(2):91-109.
[10]Freeman, W.T., Adelson, E.H., Heeger, D.J., 1991. Motion without Movement. SIGGRAPH, p.27-30.
[11]Heeger, D.J., Bergen, J.R., 1995. Pyramid-Based Texture Analysis/Synthesis. SIGGRAPH, p.229-238.
[12]Igarashi, T., Moscovich, T., Hughes, J.F., 2005. As-Rigid-as-Possible Shape Manipulation. SIGGRAPH, p.1134-1141.
[13]Kwatra, V., Schodl, A., Essa, I., Turk, G., Bobick, A., 2003. Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph., 22(3):277-286.
[14]Levin, A., Lischinski, D., Weiss, Y., 2008. A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell., 30(2):228-242.
[15]Lin, Z., Wang, L., Wang, Y., Kang, S.B., Fang, T., 2007. High resolution animated scenes from stills. IEEE Trans. Visual. Comput. Graph., 13(3):562-568.
[16]Litwinowicz, P., Williams, L., 1994. Animating Images with Drawings. SIGGRAPH, p.409-412.
[17]Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T., 2008. SIFT flow: dense correspondence across different scenes. LNCS, 5304:28-42.
[18]Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2):91-110.
[19]Lucas, B.D., Kanade, T., 1981. An Iterative Image Registration Technique with an Application to Stereo Vision. Int. Joint Conf. on Artificial Intelligence, p.674-679.
[20]Okabe, M., Anjyo, K., Igarashi, T., Seidel, H.P., 2009. Animating pictures of fluid using video examples. Comput. Graph. Forum, 28(2):677-686.
[21]Okabe, M., Anjyo, K., Onai, R., 2011. Creating fluid animation from a single image using video database. Comput. Graph. Forum, 30(7):1973-1982.
[22]Rubinstein, M., Shamir, A., Avidan, S., 2008. Improved seam carving for video retargeting. ACM Trans. Graph., 27(3), Article No. 16, p.1-9.
[23]Schodl, A., Szeliski, R., Salesin, D.H., Essa, I., 2000. Video Textures. SIGGRAPH, p.489-498.
[24]Shinya, M., Aoki, M., Tsutsuguchi, K., Kotani, N., 1999. Dynamic Texture: Physically Based 2D Animation. SIGGRAPH, p.239.
[25]Sun, M., Jepson, A.D., Fiume, E., 2003. Video Input Driven Animation (VIDA). Proc. 9th IEEE Int. Conf. on Computer Vision, p.96-103.
[26]Treuille, A., McNamara, A., Popovc, C., Stam, J., 2003. Keyframe control of smoke simulations. ACM Trans. Graph., 22(3):716-723.
[27]Wang, Y., Zhu, S.C., 2003. Modeling Textured Motion: Particle, Wave and Sketch. Proc. 9th IEEE Int. Conf. on Computer Vision, p.213-220.
Open peer comments: Debate/Discuss/Question/Opinion
<1>