CLC number: O441
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-05-25
Cited: 3
Clicked: 8176
Jian-gang Liang, He-xiu Xu. Harmonic suppressed bandpass filter using composite right/left handed transmission line[J]. Journal of Zhejiang University Science C, 2012, 13(7): 552-558.
@article{title="Harmonic suppressed bandpass filter using composite right/left handed transmission line",
author="Jian-gang Liang, He-xiu Xu",
journal="Journal of Zhejiang University Science C",
volume="13",
number="7",
pages="552-558",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1100386"
}
%0 Journal Article
%T Harmonic suppressed bandpass filter using composite right/left handed transmission line
%A Jian-gang Liang
%A He-xiu Xu
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 7
%P 552-558
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1100386
TY - JOUR
T1 - Harmonic suppressed bandpass filter using composite right/left handed transmission line
A1 - Jian-gang Liang
A1 - He-xiu Xu
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 7
SP - 552
EP - 558
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1100386
Abstract: A wideband composite right/left handed transmission line (CRLH TL) in conjunction with its corresponding equivalent circuit model is studied based on a cascaded complementary single split ring resonator (CCSSRR). The characterization is performed by theory analysis, circuit simulation, and full-wave electromagnetic (EM) simulation. The negative refractive index (NRI) and backward wave propagation performance of the CRLH TL are demonstrated. For application, a bandpass filter (BPF) with enhanced out-of-band selectivity and harmonic suppression operating at the wireless local area network (WLAN) band is designed, fabricated, and measured by combining the CRLH TL with a complementary electric inductive-capacitive resonator (CELC). Three CELC cells with wideband stopband performance in the conductor strip and ground plane, respectively, are utilized in terms of single negative permeability. The design concept has been verified by the measurement data.
[1]Amari, S., Rosenberg, U., 2004. Synthesis and design of novel in-line filters with one or two real transmission zeros. IEEE Trans. Microw. Theory Tech., 52(5):1464-1478.
[2]Bonache, J., Gil, I., García-García, J., Martín, F., 2006. Novel microstrip bandpass filters based on complementary split-ring resonators. IEEE Trans. Microw. Theory Tech., 54(1):265-271.
[3]Caloz, C., Itoh, T., 2006. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. John Wiley & Sons, Hoboken, New Jersey, CA.
[4]Chen, W.L., Wang, G.M., 2009. Effective design of novel compact fractal-shaped microstrip coupled-line bandpass filters for suppression of the second harmonic. IEEE Microw. Wirel. Compon. Lett., 19(2):74-76.
[5]Falcone, F., Lopetegi, T., Laso, M.A.G., Baena, J.D., Bonache, J., Beruete, M., Marqués, R., Martin, F., Sorolla, M., 2004. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett., 93:197401.
[6]García-García, J., Martín, F., Falcone, F., Bonache, J., Baena, J.D., Gil, I., Amat, E., Lopetegi, T., Laso, M.A.G., Iturmendi, J.A.M., et al., 2005. Microwave filters with improved stopband based on sub-wavelength resonators. IEEE Trans. Microw. Theory Tech., 53(6):1997-2006.
[7]Hand, T.H., Gollub, J., Sajuyigbe, S., Smith, D.R., Cummer, S.A., 2008. Characterization of complementary electric field coupled resonant surfaces. Appl. Phys. Lett., 93:212504.
[8]Kim, I.K., Kingsley, N., Morton, M., Bairavasubramanian, R., Papapolymerou, J., Tentzeris, M.M., Yook, J.G., 2005. Fractal-shaped microstrip coupled-line bandpass filters for suppression of second harmonic. IEEE Trans. Microw. Theory Tech., 53(9):2943-2948.
[9]Lu, M.Z., Chin, J.Y., Liu, R.P., Cui, T.J., 2008. A Microstrip Phase Shifter Using Complementary Metamaterials. Int. Conf. on Microwave and Millimeter Wave Technology, p.1569-1571.
[10]Mandal, M.K., Mondal, P., Sanyal, S., Chakrabarty, A., 2006. Low insertion-loss, sharp rejection and compact microstrip low-pass filters. IEEE Microw. Wirel. Compon. Lett., 16(11):600-602.
[11]Niu, J.X., 2010. Dual-band dual-mode patch antenna based on resonant-type metamaterial transmission line. Electron. Lett., 46(4):266-268.
[12]Schurig, D., Mock, J.J., Smith, D.R., 2006. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett., 88:041109.
[13]Tsai, C.M., Lee, S.Y., Lee, H.M., 2003. Transmission-line filters with capacitively loaded coupled lines. IEEE Trans. Microw. Theory Tech., 51(5):1517-1524.
[14]Xu, H.X., Wang, G.M., Zhang, C.X., Wang, X., 2011a. Characterization of composite right/left-handed transmission line. Electron. Lett., 47(18):1030-1032.
[15]Xu, H.X., Wang, G.M., Zhang, C.X., Peng, Q., 2011b. Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion-loss. Int. J. Electron. Commun., 65(11):901-905.
[16]Xu, H.X., Wang, G.M., Chen, P.L., Li, T.P., 2011c. Miniaturized fractal-shaped branch-line coupler for dual-band application based on composite right/left handed transmission lines. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 12(9):766-773.
Open peer comments: Debate/Discuss/Question/Opinion
<1>