Full Text:   <2646>

CLC number: TP183

On-line Access: 2012-06-05

Received: 2011-10-17

Revision Accepted: 2012-02-10

Crosschecked: 2012-04-09

Cited: 5

Clicked: 4430

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2012 Vol.13 No.6 P.403-412

http://doi.org/10.1631/jzus.C11a0278


Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks


Author(s):  Hasan Abbasi Nozari, Hamed Dehghan Banadaki, Mohammad Mokhtare, Somayeh Hekmati Vahed

Affiliation(s):  Department of Mechatronics, Faculty of Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran

Corresponding email(s):   nozari.amirali@gmail.com, hmd.dehghan@gmail.com, m.mokhtare@srbiau.ac.ir, s.hekmati@srbiau.ac.ir

Key Words:  Non-linear system identification, Recurrent local linear neuro-fuzzy (RLLNF) network, Local linear model tree (LOLIMOT), Neural network (NN), Industrial winding process


Share this article to: More |Next Article >>>

Hasan Abbasi Nozari, Hamed Dehghan Banadaki, Mohammad Mokhtare, Somayeh Hekmati Vahed. Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks[J]. Journal of Zhejiang University Science C, 2012, 13(6): 403-412.

@article{title="Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks",
author="Hasan Abbasi Nozari, Hamed Dehghan Banadaki, Mohammad Mokhtare, Somayeh Hekmati Vahed",
journal="Journal of Zhejiang University Science C",
volume="13",
number="6",
pages="403-412",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C11a0278"
}

%0 Journal Article
%T Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks
%A Hasan Abbasi Nozari
%A Hamed Dehghan Banadaki
%A Mohammad Mokhtare
%A Somayeh Hekmati Vahed
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 6
%P 403-412
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C11a0278

TY - JOUR
T1 - Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks
A1 - Hasan Abbasi Nozari
A1 - Hamed Dehghan Banadaki
A1 - Mohammad Mokhtare
A1 - Somayeh Hekmati Vahed
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 6
SP - 403
EP - 412
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C11a0278


Abstract: 
This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system. A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT), which is an incremental tree-based learning algorithm. The proposed NF models are compared with other known intelligent identifiers, namely multilayer perceptron (MLP) and radial basis function (RBF). Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system. Experimental results show the effectiveness of our proposed NF modelling approach.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Babuska, R., Verbruggen, H., 2003. Neuro-fuzzy methods for nonlinear system identification. Ann. Rev. Control, 27(1):73-85.

[2]Banadaki, H.D., Nozari, H.A., Kakahaji, H., 2011. Nonlinear simulator model identification of a walking beam furnace using recurrent local linear neuro-fuzzy network. Int. J. Control Autom., 4(4):123-134.

[3]Bastogne, T., Noura, H., Sibille, P., Richard, A., 1998. Multivariable identification of a winding process by subspace methods for tension control. Control Eng. Pract., 6(9):1077-1088.

[4]Braatz, R.D., Ogunnaike, B.A., Featherstone, A.P., 1996. Identification, Estimation and Control of Sheet and Film Processes. 13th IFAC World Congress, p.319-324.

[5]Ebler, N.A., Arnason, R., Michaelis, G., D′Sa, N., 1993. Tension control: dancer rolls or load cells. IEEE Trans. Ind. Appl., 29(4):727-739.

[6]Hoshino, I., Maekawa, Y., Fujimoto, T., Kimura, H., Kimura, H., 1988. Observer-based multivariable control of the aluminum cold tandem mill. Automatica, 24(6):741-754.

[7]Hussein, E.L., Sheta, A., El Wahab, A.A., 2001. Modeling of a Winding Machine Using Non-parametric Neural Networks. WSEAS Int. Conf. on Scientific Computation and Soft Computing, p.528-533.

[8]Hussian, A., Sheta, A., Kamel, M., Telbaney, M., Abdelwahab, A., 2000. Modeling of a Winding Machine Using Genetic Programming. Proc. Congress on Evolutionary Computation, p.398-402.

[9]Ljung, L., 1987. System Identification Theory for the User. Prentice Hall, Upper Saddle River, NJ.

[10]Nelles, O., 1996. Local Linear Model Tree for On-line Identification of Time Variant Non-linear Dynamic Systems. Int. Conf. on Artificial Neural Networks, p.115-120.

[11]Nelles, O., 2001. Nonlinear System Identification. Springer Verlag, Berlin.

[12]Nelles, O., Isermann, R., 1996. Basis Function Networks for Interpolation of Local Linear Models. IEEE Conf. on Decision and Control, p.470-475.

[13]Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A., 2009. Fault-Tolerant Control Systems: Design and Practical Applications. Springer-Verlag London Limited.

[14]Parant, F., Iung, C., Bello, P., 1989. Traction and Speed Control. Third E.P.E. Conf., p.1417-1419.

[15]Parant, F., Coeffier, C., Iung, C., 1992. Modeling of web tension in a continuous annealing line. Iron Steel Eng., p.46-49.

[16]Razavi-Far, R., Davilu, H., Palade, V., Lucas, C., 2009. Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks. Neurocomputing, 7(13-15):2939-2951.

[17]Sadeghian, M., Fatehi, A., 2011. Identification, prediction and detection of the process fault in a cement rotary kiln by locally linear neuro-fuzzy technique. J. Process Control, 21(2):302-308.

[18]Sievers, L., Balas, M.J., von Flotow, A., 1988. Modeling of web conveyance systems for multivariable control. IEEE Trans. Autom. Control, 33(6):524-531.

[19]SISTA, 1999. DaISy: Database for the Identification of Systems. Available from http://homes.esat.kuleuven.be/~smc/daisy/ [Accessed on Mar. 24, 2011].

Open peer comments: Debate/Discuss/Question/Opinion

<1>

babak@PNU<babak.arya27@yahoo.com>

2012-03-23 13:52:54

Thanks for the paper. it has been well-organized and useful.

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE