CLC number: TH138; TP273
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-09-17
Cited: 2
Clicked: 8848
Peng-fei Qian, Guo-liang Tao, De-yuan Meng, Hao Liu. A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system[J]. Journal of Zhejiang University Science C, 2014, 15(10): 878-891.
@article{title="A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system",
author="Peng-fei Qian, Guo-liang Tao, De-yuan Meng, Hao Liu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="10",
pages="878-891",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400003"
}
%0 Journal Article
%T A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system
%A Peng-fei Qian
%A Guo-liang Tao
%A De-yuan Meng
%A Hao Liu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 10
%P 878-891
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400003
TY - JOUR
T1 - A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system
A1 - Peng-fei Qian
A1 - Guo-liang Tao
A1 - De-yuan Meng
A1 - Hao Liu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 10
SP - 878
EP - 891
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400003
Abstract: In this study, we developed and tested a high-precision motion trajectory tracking controller of a pneumatic cylinder driven by four costless on/off solenoid valves rather than by a proportional directional control valve. The relationship between the pulse width modulation (PWM) of a signal’s duty cycle and control law was determined experimentally, and a mathematical model of the whole system established. Owing to unknown disturbances and unmodeled dynamics, there are considerable uncertain nonlinearities and parametric uncertainties in this pneumatic system. A modified direct adaptive robust controller (DARC) was constructed to cope with these issues. The controller employs a gradient type adaptation law based on discontinuous projection mapping to guarantee that estimated unknown model parameters stay within a known bounded region, and uses a deterministic robust control strategy to weaken the effects of unmodeled dynamics, disturbances, and parameter estimation errors. By using discontinuous projection mapping, the parameter adaptation law and the robust control law can be synthesized separately. A recursive backstepping technology is applied to account for unmatched model uncertainties. kalman filters were designed separately to estimate the motion states and the derivative of the intermediate control law in synthesizing the deterministic robust control law. Experimental results illustrate the effectiveness of the proposed controller.
[1]Ahn, K., Yokota, S., 2005. Intelligent switching control of pneumatic actuator using on/off solenoid valves. Mechatronics, 15(6):683-702.
[2]Aziz, S., Bone, G.M., 1998. Automatic tuning of an accurate position controller for pneumatic actuators. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1782-1788.
[3]Barth, E.J., Goldfarb, M., 2002. A control design method for switching systems with application to pneumatic servo systems. ASME Int. Mechanical Engineering Congress and Exposition, p.463-469.
[4]Barth, E.J., Zhang, J., Goldfarb, M., 2002. Sliding mode approach to PWM-controlled pneumatic systems. Proc. American Control Conf., 3:2362-2367.
[5]Brun, X., Belgharbi, M., Sesmat, S., et al., 1999. Control of an electropneumatic actuator: comparison between some linear and non-linear control laws. Proc. Inst. Mech. Eng. Part I: J. Syst. Contr. Eng., 213(5):387-406.
[6]Carneiro, J.F., de Almeida, F.G., 2012. A high-accuracy trajectory following controller for pneumatic devices. Int. J. Adv. Manuf. Technol., 61(1-4):253-267.
[7]Chen, H.M., Chen, Z.Y., Chung, M.C., 2009. Implementation of an integral sliding mode controller for a pneumatic cylinder position servo control system. 4th Int. Conf. on Innovative Computing, Information and Control, p.552-555.
[8]Girin, A., Plestan, F., Brun, X., et al., 2009. High-order sliding-mode controllers of an electropneumatic actuator: application to an aeronautic benchmark. IEEE Trans. Contr. Syst. Technol., 17(3):633-645.
[9]Hodgson, S., Le, M.Q., Tavakoli, M., et al., 2012. Improved tracking and switching performance of an electropneumatic positioning system. Mechatronics, 22(1):1-12.
[10]Lee, H.K., Choi, G.S., Choi, G.H., 2002. A study on tracking position control pneumatic actuators. Mechatronics, 12(6):813-831.
[11]Meng, D.Y., Tao, G.L., Ban, W., et al., 2013a. Adaptive robust output force tracking control of pneumatic cylinder while maximizing/minimizing its stiffness. J. Cent. South Univ., 20(6):1510-1518.
[12]Meng, D.Y., Tao, G.L., Zhu, X.C., 2013b. Integrated direct/ indirect adaptive robust motion trajectory tracking control of pneumatic cylinders. Int. J. Contr., 86(9):1620-1633.
[13]Nguyen, T., Leavitt, J., Jabbari, F., 2007. Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves. IEEE/ASME Trans. Mechatron., 12(2):216-219.
[14]Ning, S., Bone, G.M., 2005. Experimental comparison of two pneumatic servo position control algorithms. Proc. IEEE Int. Conf. on Mechatronics and Automation, p.37-42.
[15]Qian, P.F., Tao, G.L., Chen, J.F., 2012. Modeling and simulation of stick-slip motion for pneumatic cylinder based on meter-in circuit. Appl. Mech. Mater., 130-134:775-780.
[16]Qian, P.F., Tao, G.L., Meng, D.Y., et al., 2014. Nonlinear model-based position servo control of electro-pneumatic clutch actuator. Trans. Chin. Soc. Agric. Mach., 45(3):1-6 (in Chinese).
[17]Rao, Z., Bone, G.M., 2008. Nonlinear modeling and control of servo pneumatic actuators. IEEE Trans. Contr. Syst. Technol., 16(3):562-569.
[18]Richard, E., Scavarda, S., 1996. Comparison between linear and nonlinear control of an electropneumatic servodrive. J. Dynam. Syst. Meas. Contr., 118(2):245-252.
[19]Richardson, R., Plummer, A.R., Brown, M.D., 2001. Self-tuning control of a low-friction pneumatic actuator under the influence of gravity. IEEE Trans. Contr. Syst. Technol., 9(2):330-334.
[20]Schulte, H., Hahn, H., 2004. Fuzzy state feedback gain scheduling control of servo-pneumatic actuators. Contr. Eng. Pract., 12(5):639-650.
[21]Shen, X., Zhang, J., Barth, E.J., et al., 2006. Nonlinear model-based control of pulse width modulated pneumatic positioning system. J. Dynam. Syst. Meas. Contr., 128(3): 663-669.
[22]Situm, Z., Pavkovic, D., Novakovic, B., 2004. Servo pneumatic position control using fuzzy PID gain scheduling. J. Dynam. Syst. Meas. Contr., 126(2):376-387.
[23]Smaoui, M., Brun, X., Thomasset, D., 2006. A study on tracking position control of an electropneumatic system using backstepping design. Contr. Eng. Pract., 14(8):923-933.
[24]Tsai, Y.C., Huang, A.C., 2008. Multiple-surface sliding controller design for pneumatic servo systems. Mechatronics, 18(9):506-512.
[25]van Varseveld, R.B., Bone, G.M., 1997. Accurate position control of a pneumatic actuator using on/off solenoid valves. IEEE/ASME Trans. Mechatron., 2(3):195-204.
[26]Wang, J., Wang, D.J.D., Moore, P.R., et al., 2001. Modelling study, analysis and robust servocontrol of pneumatic cylinder actuator systems. IEE Proc.-Contr. Theory Appl., 148(1):35-42.
[27]Welch, G., Bishop, G., 2001. An introduction to the Kalman filter. SIGGRAPH, Course 8.
[28]Xiang, F., Wikander, J., 2004. Block-oriented approximate feedback linearization for control of pneumatic actuator systems. Contr. Eng. Pract., 12(4):387-399.
[29]Xu, L., Yao, B., 2001. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments. IEEE/ASME Trans. Mechatron., 6(4):444-452.
[30]Yao, B., 2003. Integrated direct/indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback form. Proc. American Control Conf., p.3020-3025.
[31]Yao, B., Palmer, A., 2002. Indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback forms. Proc. 15th IFAC World Congress, p.1050.
[32]Yao, B., Tomizuka, M., 1994. Smooth robust adaptive sliding mode control of robot manipulators with guaranteed transient performance. Proc. American Control Conf., p.1176-1180.
[33]Yao, B., Tomizuka, M., 1997. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 33(5):893-900.
[34]Yao, B., Bu, F., Reedy, J., et al., 2000. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Trans. Mechatron., 5(1):79-91.
[35]Zhu, X.C., Tao, G.L., Yao, B., et al., 2008. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica, 44(9):2248-2257.
Open peer comments: Debate/Discuss/Question/Opinion
<1>