Full Text:   <3443>

Summary:  <2267>

CLC number: TH138; TP273

On-line Access: 2014-10-09

Received: 2014-01-05

Revision Accepted: 2014-04-16

Crosschecked: 2014-09-17

Cited: 2

Clicked: 8488

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.10 P.878-891

http://doi.org/10.1631/jzus.C1400003


A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system


Author(s):  Peng-fei Qian, Guo-liang Tao, De-yuan Meng, Hao Liu

Affiliation(s):  The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   pengfeiqian@zju.edu.cn

Key Words:  On/off solenoid valve, Tracking control, Robust control, Adaptive control, Kalman filter, Discontinuous projection


Peng-fei Qian, Guo-liang Tao, De-yuan Meng, Hao Liu. A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system[J]. Journal of Zhejiang University Science C, 2014, 15(10): 878-891.

@article{title="A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system",
author="Peng-fei Qian, Guo-liang Tao, De-yuan Meng, Hao Liu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="10",
pages="878-891",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400003"
}

%0 Journal Article
%T A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system
%A Peng-fei Qian
%A Guo-liang Tao
%A De-yuan Meng
%A Hao Liu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 10
%P 878-891
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400003

TY - JOUR
T1 - A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system
A1 - Peng-fei Qian
A1 - Guo-liang Tao
A1 - De-yuan Meng
A1 - Hao Liu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 10
SP - 878
EP - 891
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400003


Abstract: 
In this study, we developed and tested a high-precision motion trajectory tracking controller of a pneumatic cylinder driven by four costless on/off solenoid valves rather than by a proportional directional control valve. The relationship between the pulse width modulation (PWM) of a signal’s duty cycle and control law was determined experimentally, and a mathematical model of the whole system established. Owing to unknown disturbances and unmodeled dynamics, there are considerable uncertain nonlinearities and parametric uncertainties in this pneumatic system. A modified direct adaptive robust controller (DARC) was constructed to cope with these issues. The controller employs a gradient type adaptation law based on discontinuous projection mapping to guarantee that estimated unknown model parameters stay within a known bounded region, and uses a deterministic robust control strategy to weaken the effects of unmodeled dynamics, disturbances, and parameter estimation errors. By using discontinuous projection mapping, the parameter adaptation law and the robust control law can be synthesized separately. A recursive backstepping technology is applied to account for unmatched model uncertainties. kalman filters were designed separately to estimate the motion states and the derivative of the intermediate control law in synthesizing the deterministic robust control law. Experimental results illustrate the effectiveness of the proposed controller.

用于气动系统的一种改进型直接自适应鲁棒运动跟踪控制器

研究目的:采用直接自适应鲁棒控制器(DARC)时,可使用廉价开关电磁阀实现气动系统高精度运动轨迹跟踪控制。为简化DARC算法,本文提出一种改进型直接自适应鲁棒控制策略(modified DARC)。
创新要点:采用卡尔曼滤波器,估计合成确定性鲁棒控制律时的中间控制率的一阶导数,从而避免求解中间控制率的一阶导数的可计算部分,简化控制算法。
方法提亮:采用基于离散投影的梯度类型的自适应率,以确保估计出的未知模型参数落在已知有界区域内;使用确定性鲁棒控制策略减小未建模动态、扰动以及参数估计误差的影响;使用离散投影图,以同时合成参数自适应律和鲁棒控制律;分别设计卡尔曼滤波器,用于估计运动状态、估计合成确定性鲁棒控制律时的中间控制率的一阶导数。
重要结论:本文提出的改进型自适应鲁棒控制策略,可以简化控制算法。实验结果表明,该策略能实现高精度的运动轨迹跟踪控制,且对扰动有很强的鲁棒性。
开关电磁阀;跟踪控制;鲁棒控制;自适应控制;卡尔曼滤波器;离散投影

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahn, K., Yokota, S., 2005. Intelligent switching control of pneumatic actuator using on/off solenoid valves. Mechatronics, 15(6):683-702.

[2]Aziz, S., Bone, G.M., 1998. Automatic tuning of an accurate position controller for pneumatic actuators. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1782-1788.

[3]Barth, E.J., Goldfarb, M., 2002. A control design method for switching systems with application to pneumatic servo systems. ASME Int. Mechanical Engineering Congress and Exposition, p.463-469.

[4]Barth, E.J., Zhang, J., Goldfarb, M., 2002. Sliding mode approach to PWM-controlled pneumatic systems. Proc. American Control Conf., 3:2362-2367.

[5]Brun, X., Belgharbi, M., Sesmat, S., et al., 1999. Control of an electropneumatic actuator: comparison between some linear and non-linear control laws. Proc. Inst. Mech. Eng. Part I: J. Syst. Contr. Eng., 213(5):387-406.

[6]Carneiro, J.F., de Almeida, F.G., 2012. A high-accuracy trajectory following controller for pneumatic devices. Int. J. Adv. Manuf. Technol., 61(1-4):253-267.

[7]Chen, H.M., Chen, Z.Y., Chung, M.C., 2009. Implementation of an integral sliding mode controller for a pneumatic cylinder position servo control system. 4th Int. Conf. on Innovative Computing, Information and Control, p.552-555.

[8]Girin, A., Plestan, F., Brun, X., et al., 2009. High-order sliding-mode controllers of an electropneumatic actuator: application to an aeronautic benchmark. IEEE Trans. Contr. Syst. Technol., 17(3):633-645.

[9]Hodgson, S., Le, M.Q., Tavakoli, M., et al., 2012. Improved tracking and switching performance of an electropneumatic positioning system. Mechatronics, 22(1):1-12.

[10]Lee, H.K., Choi, G.S., Choi, G.H., 2002. A study on tracking position control pneumatic actuators. Mechatronics, 12(6):813-831.

[11]Meng, D.Y., Tao, G.L., Ban, W., et al., 2013a. Adaptive robust output force tracking control of pneumatic cylinder while maximizing/minimizing its stiffness. J. Cent. South Univ., 20(6):1510-1518.

[12]Meng, D.Y., Tao, G.L., Zhu, X.C., 2013b. Integrated direct/ indirect adaptive robust motion trajectory tracking control of pneumatic cylinders. Int. J. Contr., 86(9):1620-1633.

[13]Nguyen, T., Leavitt, J., Jabbari, F., 2007. Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves. IEEE/ASME Trans. Mechatron., 12(2):216-219.

[14]Ning, S., Bone, G.M., 2005. Experimental comparison of two pneumatic servo position control algorithms. Proc. IEEE Int. Conf. on Mechatronics and Automation, p.37-42.

[15]Qian, P.F., Tao, G.L., Chen, J.F., 2012. Modeling and simulation of stick-slip motion for pneumatic cylinder based on meter-in circuit. Appl. Mech. Mater., 130-134:775-780.

[16]Qian, P.F., Tao, G.L., Meng, D.Y., et al., 2014. Nonlinear model-based position servo control of electro-pneumatic clutch actuator. Trans. Chin. Soc. Agric. Mach., 45(3):1-6 (in Chinese).

[17]Rao, Z., Bone, G.M., 2008. Nonlinear modeling and control of servo pneumatic actuators. IEEE Trans. Contr. Syst. Technol., 16(3):562-569.

[18]Richard, E., Scavarda, S., 1996. Comparison between linear and nonlinear control of an electropneumatic servodrive. J. Dynam. Syst. Meas. Contr., 118(2):245-252.

[19]Richardson, R., Plummer, A.R., Brown, M.D., 2001. Self-tuning control of a low-friction pneumatic actuator under the influence of gravity. IEEE Trans. Contr. Syst. Technol., 9(2):330-334.

[20]Schulte, H., Hahn, H., 2004. Fuzzy state feedback gain scheduling control of servo-pneumatic actuators. Contr. Eng. Pract., 12(5):639-650.

[21]Shen, X., Zhang, J., Barth, E.J., et al., 2006. Nonlinear model-based control of pulse width modulated pneumatic positioning system. J. Dynam. Syst. Meas. Contr., 128(3): 663-669.

[22]Situm, Z., Pavkovic, D., Novakovic, B., 2004. Servo pneumatic position control using fuzzy PID gain scheduling. J. Dynam. Syst. Meas. Contr., 126(2):376-387.

[23]Smaoui, M., Brun, X., Thomasset, D., 2006. A study on tracking position control of an electropneumatic system using backstepping design. Contr. Eng. Pract., 14(8):923-933.

[24]Tsai, Y.C., Huang, A.C., 2008. Multiple-surface sliding controller design for pneumatic servo systems. Mechatronics, 18(9):506-512.

[25]van Varseveld, R.B., Bone, G.M., 1997. Accurate position control of a pneumatic actuator using on/off solenoid valves. IEEE/ASME Trans. Mechatron., 2(3):195-204.

[26]Wang, J., Wang, D.J.D., Moore, P.R., et al., 2001. Modelling study, analysis and robust servocontrol of pneumatic cylinder actuator systems. IEE Proc.-Contr. Theory Appl., 148(1):35-42.

[27]Welch, G., Bishop, G., 2001. An introduction to the Kalman filter. SIGGRAPH, Course 8.

[28]Xiang, F., Wikander, J., 2004. Block-oriented approximate feedback linearization for control of pneumatic actuator systems. Contr. Eng. Pract., 12(4):387-399.

[29]Xu, L., Yao, B., 2001. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments. IEEE/ASME Trans. Mechatron., 6(4):444-452.

[30]Yao, B., 2003. Integrated direct/indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback form. Proc. American Control Conf., p.3020-3025.

[31]Yao, B., Palmer, A., 2002. Indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback forms. Proc. 15th IFAC World Congress, p.1050.

[32]Yao, B., Tomizuka, M., 1994. Smooth robust adaptive sliding mode control of robot manipulators with guaranteed transient performance. Proc. American Control Conf., p.1176-1180.

[33]Yao, B., Tomizuka, M., 1997. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 33(5):893-900.

[34]Yao, B., Bu, F., Reedy, J., et al., 2000. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Trans. Mechatron., 5(1):79-91.

[35]Zhu, X.C., Tao, G.L., Yao, B., et al., 2008. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica, 44(9):2248-2257.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE