CLC number: TP391
On-line Access: 2014-11-07
Received: 2014-02-07
Revision Accepted: 2014-08-21
Crosschecked: 2014-10-15
Cited: 2
Clicked: 8685
Hong Liu, Yu-long Zhou, Zhao-peng Gu. Inertial measurement unit-camera calibration based on incomplete inertial sensor information[J]. Journal of Zhejiang University Science C, 2014, 15(11): 999-1008.
@article{title="Inertial measurement unit-camera calibration based on incomplete inertial sensor information",
author="Hong Liu, Yu-long Zhou, Zhao-peng Gu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="11",
pages="999-1008",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400038"
}
%0 Journal Article
%T Inertial measurement unit-camera calibration based on incomplete inertial sensor information
%A Hong Liu
%A Yu-long Zhou
%A Zhao-peng Gu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 11
%P 999-1008
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400038
TY - JOUR
T1 - Inertial measurement unit-camera calibration based on incomplete inertial sensor information
A1 - Hong Liu
A1 - Yu-long Zhou
A1 - Zhao-peng Gu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 11
SP - 999
EP - 1008
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400038
Abstract: This paper is concerned with the problem of estimating the relative orientation between an inertial measurement unit (IMU) and a camera. Unlike most existing IMU-camera calibrations, the main challenge in this paper is that the information output from the IMU is incomplete. For example, only two tilt information can be read from the gravity sensor of a smart phone. Despite incomplete inertial information, there are strong restrictions between the IMU and camera coordinate systems. This paper addresses the incomplete information based IMU-camera calibration problem by exploiting the intrinsic restrictions among the coordinate transformations. First, the IMU transformation between two poses is formulated with the unknown IMU information. Then the defective IMU information is restored using the complementary visual information. Finally, the Levenberg-Marquardt (LM) algorithm is applied to estimate the optimal calibration result in noisy environments. Experiments on both synthetic and real data show the validity and robustness of our algorithm.
[1]Bajd, T., Mihelj, M., Munih, M., 2013. Introduction to Robotics. Springer, the Netherlands.
[2]Chen, H.H., 1991. A screw motion approach to uniqueness analysis of head-eye geometry. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.145-151.
[3]Chow, J.C.K., Kamel, M., 1991. Finding the position and orientation of a sensor on a robot manipulator using quaternions. Int. J. Robot. Res., 10(3):240-254.
[4]Fassi, I., Legnani, G., 2005. Hand to sensor calibration: a geometrical interpretation of the matrix equation AX=XB. J. Robot. Syst., 22(9):497-506.
[5]Gu, Z.P., 2011. A Study on Monocular Simultaneous Localization and Mapping. PhD Thesis, Chinese Academy of Sciences, Beijing, China (in Chinese).
[6]Gu, Z.P., Dong, Q.L., 2012. Monocular SLAM based on partial IMU information. J. Comput. Aid. Des. Comput. Graph., 24(2):155-160 (in Chinese).
[7]Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision. Cambridge University Press, NY, USA.
[8]Heller, J., Havlena, M., Pajdla, T., 2012. A branch-and-bound algorithm for globally optimal hand-eye calibration. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1608-1615.
[9]Horaud, R., Dornaika, F., 1995. Hand-eye calibration. Int. J. Robot. Res., 14(3):195-210.
[10]Lobo, J., Dias, J., 2007. Relative pose calibration between visual and inertial sensors. Int. J. Robot. Res., 26(6):561-575.
[11]Lu, Y., Chou, J.C.K., 1995. Eight-space quaternion approach for robotic hand-eye calibration. Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, p.3316-3321.
[12]Ma, S., Zhang, Z., 1998. Computer Vision. Science Press, Beijing, China (in Chinese).
[13]Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11(2):431-441.
[14]Mirzaei, F.M., Roumeliotis, S.I., 2008. A Kalman filter-based algorithm for IMU-camera calibration: observability analysis and performance evaluation. IEEE Trans. Robot., 24(5):1143-1156.
[15]Nützi, G., Weiss, S., Scaramuzza, D., et al., 2011. Fusion of IMU and vision for absolute scale estimation in monocular SLAM. J. Intell. Robot. Syst., 61(1-4):287-299.
[16]Park, F.C., Martin, B.J., 1994. Robot sensor calibration: solving AX=XB on the Euclidean group. IEEE Trans. Robot. Autom., 10(5):717-721.
[17]Seo, Y., Choi, Y.J., Lee, S.W., 2009. A branch-and-bound algorithm for globally optimal calibration of a camera-and-rotation-sensor system. Proc. 12th Int. Conf. on Computer Vision, p.1173-1178.
[18]Shiu, Y.C., Ahmad, S., 1989. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB. IEEE Trans. Robot. Autom., 5(1):16-29.
[19]Strobl, K.H., Hirzinger, G., 2006. Optimal hand-eye calibration. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.4647-4653.
[20]Tsai, R.Y., Lenz, R.K., 1989. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans Robot. Autom., 5(3):345-358.
[21]Vicentini, F., Pedrocchi, N., Malosio, M., et al., 2011. High-accuracy hand-eye calibration from motion on manifolds. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3327-3334.
[22]Wang, Y., Ma, X., Wang, Y., et al., 2012. Location optimization of multiple distribution centers under fuzzy environment. J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 13(10):782-798.
[23]Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Trans. Patt. Anal. Mach. Intell., 22(11):1330-1334.
[24]Zhao, Z., 2011. Hand-eye calibration using convex optimization. Proc. IEEE Int. Conf. on Robotics and Automation, p.2947-2952.
[25]Zhao, Z., Liu, Y., 2009. A hand-eye calibration algorithm based on screw motions. Robotica, 27(2):217-223.
Open peer comments: Debate/Discuss/Question/Opinion
<1>