Full Text:   <923>

Summary:  <490>

CLC number: TP391.7

On-line Access: 2014-09-06

Received: 2014-03-18

Revision Accepted: 2014-07-26

Crosschecked: 2014-08-19

Cited: 1

Clicked: 7918

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.9 P.744-753

http://doi.org/10.1631/jzus.C1400097


Visual salience guided feature-aware shape simplification


Author(s):  Yong-wei Miao, Fei-xia Hu, Min-yan Chen, Zhen Liu, Hua-hao Shou

Affiliation(s):  College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China; more

Corresponding email(s):   ywmiao@zjut.edu.cn

Key Words:  Visual salience, Shape simplification, Content-aware, Weighted quadric error metric, Feature-aware


Yong-wei Miao, Fei-xia Hu, Min-yan Chen, Zhen Liu, Hua-hao Shou. Visual salience guided feature-aware shape simplification[J]. Journal of Zhejiang University Science C, 2014, 15(9): 744-753.

@article{title="Visual salience guided feature-aware shape simplification",
author="Yong-wei Miao, Fei-xia Hu, Min-yan Chen, Zhen Liu, Hua-hao Shou",
journal="Journal of Zhejiang University Science C",
volume="15",
number="9",
pages="744-753",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400097"
}

%0 Journal Article
%T Visual salience guided feature-aware shape simplification
%A Yong-wei Miao
%A Fei-xia Hu
%A Min-yan Chen
%A Zhen Liu
%A Hua-hao Shou
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 9
%P 744-753
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400097

TY - JOUR
T1 - Visual salience guided feature-aware shape simplification
A1 - Yong-wei Miao
A1 - Fei-xia Hu
A1 - Min-yan Chen
A1 - Zhen Liu
A1 - Hua-hao Shou
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 9
SP - 744
EP - 753
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400097


Abstract: 
In the area of 3D digital engineering and 3D digital geometry processing, shape simplification is an important task to reduce their requirement of large memory and high time complexity. By incorporating the content-aware visual salience measure of a polygonal mesh into simplification operation, a novel feature-aware shape simplification approach is presented in this paper. Owing to the robust extraction of relief heights on 3D highly detailed meshes, our visual salience measure is defined by a center-surround operator on Gaussian-weighted relief heights in a scale-dependent manner. Guided by our visual salience map, the feature-aware shape simplification algorithm can be performed by weighting the high-dimensional feature space quadric error metric of vertex pair contractions with the weight map derived from our visual salience map. The weighted quadric error metric is calculated in a six-dimensional feature space by combining the position and normal information of mesh vertices. Experimental results demonstrate that our visual salience guided shape simplification scheme can adaptively and effectively re-sample the underlying models in a feature-aware manner, which can account for the visually salient features of the complex shapes and thus yield better visual fidelity.

视觉显著性引导的特征敏感形状简化

研究目的:在三维数字化工程和数字几何处理领域,在获取高度复杂模型的大规模采样数据过程中,由于利用三维扫描设备获取的均匀采样点数据不依赖于模型内在特征,大量采样点数据通常具有许多冗余信息,使得三维模型的远程传输、隐式曲面的快速重建、数字娱乐和虚拟现实实时显示等应用中,需要庞大内存和大量时间处理大规模采样数据。基于视觉显著特性的特征敏感形状简化技术,可在保持复杂模型显著特征的前提下减少模型数据量,从而满足特定应用的需求。
创新要点:提出一种视觉显著性引导的特征敏感形状简化方法。将三维复杂模型的内容敏感显著性度量引入模型顶点对的迭代收缩简化。顶点对的收缩误差由显著性加权的二次误差度量来衡量。与传统模型简化方法不同,该误差度量定义在结合模型顶点位置信息和法向量信息的6维空间上。
重要结论:实验结果表明,得到的重采样结果能够很好地反映模型的视觉显著特征,在模型的高显著区域采样点较稠密,在低显著区域采样点较稀疏。
视觉显著性度量;形状简化;内容敏感;加权二次误差度量;特征敏感

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Botsch, M., Pauly, M., Kobbelt, L., et al., 2007. Geometric modeling based on polygonal meshes. ACM SIGGRAPH, Course Notes, Article 1.

[2]Cignoni, P., Rocchini, C., Scopigno, R., 1998. Metro: measuring error on simplified surfaces. Comput. Graph. Forum, 17(2):167-174.

[3]Cohen, J., Varshney, A., Manocha, D., et al., 1996. Simplification envelopes. Proc. 23rd Annual Conf. on Computer Graphics and Interactive Techniques, p.119-128.

[4]Corsini, M., Larabi, M.C., Lavoué, G., et al., 2013. Perceptual metrics for static and dynamic triangle meshes. Comput. Graph. Forum, 32(1):101-125.

[5]Fleming, R.W., Singh, M., 2009. Visual perception of 3D shape. ACM SIGGRAPH, Course Notes, Article 24.

[6]Garland, M., Heckbert, P.S., 1997. Surface simplification using quadric error metrics. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.209-216.

[7]Garland, M., Heckbert, P.S., 1998. Simplifying surfaces with color and texture using quadric error metrics. Proc. IEEE Visualization, p.263-269.

[8]Hoppe, H., 1996. Progressive meshes. Proc. 23rd Annual Conf. on Computer Graphics and Interactive Techniques, p.99-108.

[9]Hoppe, H., 1999. New quadric metric for simplifying meshes with appearance attributes. Proc. IEEE Visualization, p.59-66.

[10]Hoppe, H., DeRose, T., Duchamp, T., et al., 1993. Mesh optimization. Proc. 20th Annual Conf. on Computer Graphics and Interactive Techniques, p.19-26.

[11]Howlett, S., Hamill, J., O′Sullivan, C., 2005. Predicting and evaluating saliency for simplified polygonal models. ACM Trans. Appl. Percept., 2(3):286-308.

[12]Itti, L., Koch, C., Niebur, E., 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Patt. Anal. Mach. Intell., 20(11):1254-1259.

[13]Lee, C.H., Varshney, A., Jacobs, D.W., 2005. Mesh saliency. ACM Trans. Graph., 24(3):659-666.

[14]Liu, Y., Liu, M., Kihara, D., et al., 2007. Salient critical points for meshes. Proc. ACM Symp. on Solid and Physical Modeling, p.277-282.

[15]Luebke, D., 2001. A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl., 21(1):24-35.

[16]Luebke, D., Hallen, B., 2001. Perceptually driven simplification for interactive rendering. Proc. 12th Eurographics Workshop on Rendering, p.223-234.

[17]Luebke, D., Reddy, M., Cohen, J.D., et al., 2003. Level of detail for 3D graphics. Morgan Kaufman Publishers, San Francisco, CA, USA.

[18]Miao, Y., Bösch, J., Pajarola, R., et al., 2012a. Feature sensitive re-sampling of point set surfaces with Gaussian spheres. Sci. China Inform. Sci., 55(9):2075-2089.

[19]Miao, Y., Feng, J., Wang, J., et al., 2012b. A multi-channel salience based detail exaggeration technique for 3D relief surfaces. J. Comput. Sci. Technol., 27(6):1100-1109.

[20]Ohtake, Y., Belyaev, A., Seidel, H.P., 2002. Mesh smoothing by adaptive and anisotropic Gaussian filter applied to mesh normals. Proc. Vision, Modeling and Visualization, p.203-210.

[21]Press, W.H., Teukolsky, S.A., Vetterling, W.T., et al., 1992. Numerical Recipes in C: the Art of Scientific Computing (2nd Ed.). Cambridge University Press, New York.

[22]Qu, L., Meyer, G.W., 2008. Perceptually guided polygon reduction. IEEE Trans. Visual. Comput. Graph., 14(5):1015-1029.

[23]Shilane, P., Funkhouser, T., 2007. Distinctive regions of 3D surfaces. ACM Trans. Graph., 26(2):7:1-7:15.

[24]Todd, J.T., 2004. The visual perception of 3D shape. Trends Cogn. Sci., 8(3):115-121.

[25]van Kaick, M., Pedrini, H., 2006. A comparative evaluation of metrics for fast mesh simplification. Comput. Graph. Forum, 25(2):197-210.

[26]Wei, J., Lou, Y., 2010. Feature preserving mesh simplification using feature sensitive metric. J. Comput. Sci. Technol., 25(3):595-605.

[27]Williams, N., Luebke, D., Cohen, J.D., et al., 2003. Perceptually guided simplification of lit, textured meshes. Proc. Symp. on Interactive 3D Graphics, p.113-121.

[28]Wu, Y., He, Y., Cai, H., 2004. QEM-based mesh simplification with global geometry features preserved. Proc. 2nd Int. Conf. on Computer Graphics and Interactive Techniques in Australasia and South East Asia, p.50-57.

[29]Xiao, C., Fu, H., Tai, C.L., 2009. Hierarchical aggregation for efficient shape extraction. Vis. Comput., 25(3):267-278.

[30]Xing, L.P., Hui, K.C., 2012. A visual and geometry-based hybrid approach for surface simplification. Comput.-Aid. Des. Appl., 9(2):167-176.

[31]Zatzarinni, R., Tal, A., Shamir, A., 2009. Relief analysis and extraction. ACM Trans. Graph., 28(5):136:1-136:7.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE