Full Text:   <1512>

Summary:  <476>

CLC number: TP399; R318

On-line Access: 2014-10-09

Received: 2014-04-26

Revision Accepted: 2014-08-11

Crosschecked: 2014-09-17

Cited: 3

Clicked: 3366

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.10 P.832-838


Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition

Author(s):  Hong-tao Wang, Yuan-qing Li, Tian-you Yu

Affiliation(s):  School of Information Engineering, Wuyi University, Jiangmen 529020, China; more

Corresponding email(s):   auyqli@scut.edu.cn

Key Words:  Brain-computer interface, Speech recognition, Coordinated control, Intelligent wheelchair

Hong-tao Wang, Yuan-qing Li, Tian-you Yu. Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition[J]. Journal of Zhejiang University Science C, 2014, 15(10): 832-838.

@article{title="Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition",
author="Hong-tao Wang, Yuan-qing Li, Tian-you Yu",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition
%A Hong-tao Wang
%A Yuan-qing Li
%A Tian-you Yu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 10
%P 832-838
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400150

T1 - Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition
A1 - Hong-tao Wang
A1 - Yuan-qing Li
A1 - Tian-you Yu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 10
SP - 832
EP - 838
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400150

An intelligent wheelchair is devised, which is controlled by a coordinated mechanism based on a brain-computer interface (BCI) and speech recognition. By performing appropriate activities, users can navigate the wheelchair with four steering behaviors (start, stop, turn left, and turn right). Five healthy subjects participated in an indoor experiment. The results demonstrate the efficiency of the coordinated control mechanism with satisfactory path and time optimality ratios, and show that speech recognition is a fast and accurate supplement for BCI-based control systems. The proposed intelligent wheelchair is especially suitable for patients suffering from paralysis (especially those with aphasia) who can learn to pronounce only a single sound (e.g., ‘ah’).



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abraham, M., Ormrod, J., 1999. Artificial speaking device for aphasic children. Proc. 1st Joint BMES/EMBS Conf., p.665-671.

[2]Barea, R., Boquete, L., Mazp, M., et al., 2002. System for assisted mobility using eye movements based on electrooculography. IEEE Trans. Neur. Syst. Rehabil. Eng., 10(4):209-218.

[3]Blanchard, G., Blankertz, B., 2004. BCI competition 2003—data set IIa: spatial patterns of self-controlled brain rhythm modulations. IEEE Trans. Biomed. Eng., 51(6):1062-1066.

[4]Bromberg, M.B., 2008. Quality of life in amyotrophic lateral sclerosis. Phys. Med. Rehabil. Clin. N. Amer., 19(3):591-605.

[5]Eddy, S.R., 1996. Hidden Markov models. Curr. Opin. Struct. Biol., 6(3):361-365.

[6]Furui, S., 1986. Speaker-independent isolated word recognition using dynamic features of speech spectrum. IEEE Trans. Acoust. Speech Signal Process., 34(1):52-59.

[7]Huang, D.D., Qian, K., Fei, D.Y., et al., 2012. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans. Neur. Syst. Rehabil. Eng., 20(3):379-388.

[8]Huo, X.L., Wang, J., Ghovanloo, M., 2008. A magneto-inductive sensor based wireless tongue-computer interface. IEEE Trans. Neur. Syst. Rehabil. Eng., 16(5):497-504.

[9]Iturrate, I., Antelis, J.M., Kubler, A., et al., 2009. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot., 25(3):614-627.

[10]Lee, K.F., Hon, H.W., 1989. Speaker-independent phone recognition using hidden Markov models. IEEE Trans. Acoust. Speech Signal Process., 37(11):1641-1648.

[11]Li, Y.Q., Guan, C.T., 2008. Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm. Mach. Learn., 71(1):33-53.

[12]Li, Y.Q., Long, J., Yu, T., et al., 2010. An EEG-based BCI system for 2-D cursor control by combining mu/beta rhythm and P300 potential. IEEE Trans. Biomed. Eng., 57(10):2495-2505.

[13]Li, Y.Q., Pan, J.H., Wang, F., et al., 2013. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng., 60(11):3156-3166.

[14]Liu, T., Li, Y.Q., Wang, H.T., 2012. An assistive system based on ultrasonic sensors for brain-controlled wheelchair to avoid obstacles. Proc. 31st Chinese Control Conf., p.3741-3744.

[15]Long, J.Y., Li, Y.Q., Wang, H.T., et al., 2012. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans. Neur. Syst. Rehabil. Eng., 20(5):720-729.

[16]Luo, Y., Huang, H., Zhang, Y., et al., 2011. A novel endpoint detection method and its application on human-computer interaction of intelligent wheelchair. J. Chongqing Univ. Posts Telecommun. (Nat.. Sci. Ed.), 23(4):487-491 (in Chinese).

[17]Millan, J.D.R., Galan, F., Vanhooydonck, D., et al., 2009. Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. Proc. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, p.3361-3364.

[18]Panicker, R.C., Puthusserypady, S., Sun, Y., 2011. An asynchronous P300 BCI with SSVEP-based control state detection. IEEE Trans. Biomed. Eng., 58(6):1781-1788.

[19]Peixoto, N., Nik, H.G., Charkhkar, H., 2013. Voice controlled wheelchairs: fine control by humming. Comput. Methods Programs Biomed., 112(1):156-165.

[20]Rabiner, L.R., Levinson, S.E., Sondhi, M.M., 1983. On the application of vector quantization and hidden Markov models to speaker-independent, isolated word recognition. Bell Syst. Tech. J., 62(4):1075-1105.

[21]Raya, R., Roa, J.O., Rocon, E., et al., 2010. Wearable inertial mouse for children with physical and cognitive impairments. Sens. Actuat. A, 162(2):248-259.

[22]Rebsamen, B., Burdet, E., Guan, C.T., et al., 2006. A brain-controlled wheelchair based on P300 and path guidance. Proc. 1st IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, p.1101-1106.

[23]Rebsamen, B., Guan, C.T., Zhang, H.H., et al., 2010. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans. Neur. Syst. Rehabil. Eng., 18(6):590-598.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE