Full Text:   <1512>

Summary:  <476>

CLC number: TP399; R318

On-line Access: 2014-10-09

Received: 2014-04-26

Revision Accepted: 2014-08-11

Crosschecked: 2014-09-17

Cited: 3

Clicked: 3366

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.10 P.832-838

http://doi.org/10.1631/jzus.C1400150


Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition


Author(s):  Hong-tao Wang, Yuan-qing Li, Tian-you Yu

Affiliation(s):  School of Information Engineering, Wuyi University, Jiangmen 529020, China; more

Corresponding email(s):   auyqli@scut.edu.cn

Key Words:  Brain-computer interface, Speech recognition, Coordinated control, Intelligent wheelchair


Hong-tao Wang, Yuan-qing Li, Tian-you Yu. Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition[J]. Journal of Zhejiang University Science C, 2014, 15(10): 832-838.

@article{title="Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition",
author="Hong-tao Wang, Yuan-qing Li, Tian-you Yu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="10",
pages="832-838",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400150"
}

%0 Journal Article
%T Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition
%A Hong-tao Wang
%A Yuan-qing Li
%A Tian-you Yu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 10
%P 832-838
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400150

TY - JOUR
T1 - Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition
A1 - Hong-tao Wang
A1 - Yuan-qing Li
A1 - Tian-you Yu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 10
SP - 832
EP - 838
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400150


Abstract: 
An intelligent wheelchair is devised, which is controlled by a coordinated mechanism based on a brain-computer interface (BCI) and speech recognition. By performing appropriate activities, users can navigate the wheelchair with four steering behaviors (start, stop, turn left, and turn right). Five healthy subjects participated in an indoor experiment. The results demonstrate the efficiency of the coordinated control mechanism with satisfactory path and time optimality ratios, and show that speech recognition is a fast and accurate supplement for BCI-based control systems. The proposed intelligent wheelchair is especially suitable for patients suffering from paralysis (especially those with aphasia) who can learn to pronounce only a single sound (e.g., ‘ah’).

基于脑机接口与语音协同控制的智能轮椅

研究目的:面向重症瘫痪(特别是伴随失语症)病人,充分发掘其有限对外交流信息的途径(脑电、语音等),利用脑机接口与语音识别协同控制的方式实现智能轮椅控制。
创新要点:采用脑电(事件关联电位、运动想象)和语音(单音,如"啊")实现了轮椅的前进、左转、右转和停止功能。
研究方法:设计了轮椅控制硬件平台(图1)和协同控制算法(图4)。其中,事件关联电位脑机接口(P300)子算法识别受试者是否注视"S"闪烁键(闪烁键界面如图3所示),若受试者有控制意图,则转化成相应的启动指令;运动想象脑机接口子算法实时提取受试者脑电信号,并将其左/右手运动想象意图转化为左/右转控制指令;语音识别子算法识别受试者主动发出的单音(如"啊"),并转化为停止指令。
重要结论:受试者仅用视觉刺激,想象左/右手及单音(如"啊")就能控制轮椅的前进、左转、右转、停止和启动。五位健康受试者参与了评估实验,达到了良好的控制效果,特别是最佳时间比和最佳路径比两项指标令人满意。
脑机接口;语音识别;协同控制;智能轮椅

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abraham, M., Ormrod, J., 1999. Artificial speaking device for aphasic children. Proc. 1st Joint BMES/EMBS Conf., p.665-671.

[2]Barea, R., Boquete, L., Mazp, M., et al., 2002. System for assisted mobility using eye movements based on electrooculography. IEEE Trans. Neur. Syst. Rehabil. Eng., 10(4):209-218.

[3]Blanchard, G., Blankertz, B., 2004. BCI competition 2003—data set IIa: spatial patterns of self-controlled brain rhythm modulations. IEEE Trans. Biomed. Eng., 51(6):1062-1066.

[4]Bromberg, M.B., 2008. Quality of life in amyotrophic lateral sclerosis. Phys. Med. Rehabil. Clin. N. Amer., 19(3):591-605.

[5]Eddy, S.R., 1996. Hidden Markov models. Curr. Opin. Struct. Biol., 6(3):361-365.

[6]Furui, S., 1986. Speaker-independent isolated word recognition using dynamic features of speech spectrum. IEEE Trans. Acoust. Speech Signal Process., 34(1):52-59.

[7]Huang, D.D., Qian, K., Fei, D.Y., et al., 2012. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans. Neur. Syst. Rehabil. Eng., 20(3):379-388.

[8]Huo, X.L., Wang, J., Ghovanloo, M., 2008. A magneto-inductive sensor based wireless tongue-computer interface. IEEE Trans. Neur. Syst. Rehabil. Eng., 16(5):497-504.

[9]Iturrate, I., Antelis, J.M., Kubler, A., et al., 2009. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot., 25(3):614-627.

[10]Lee, K.F., Hon, H.W., 1989. Speaker-independent phone recognition using hidden Markov models. IEEE Trans. Acoust. Speech Signal Process., 37(11):1641-1648.

[11]Li, Y.Q., Guan, C.T., 2008. Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm. Mach. Learn., 71(1):33-53.

[12]Li, Y.Q., Long, J., Yu, T., et al., 2010. An EEG-based BCI system for 2-D cursor control by combining mu/beta rhythm and P300 potential. IEEE Trans. Biomed. Eng., 57(10):2495-2505.

[13]Li, Y.Q., Pan, J.H., Wang, F., et al., 2013. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng., 60(11):3156-3166.

[14]Liu, T., Li, Y.Q., Wang, H.T., 2012. An assistive system based on ultrasonic sensors for brain-controlled wheelchair to avoid obstacles. Proc. 31st Chinese Control Conf., p.3741-3744.

[15]Long, J.Y., Li, Y.Q., Wang, H.T., et al., 2012. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans. Neur. Syst. Rehabil. Eng., 20(5):720-729.

[16]Luo, Y., Huang, H., Zhang, Y., et al., 2011. A novel endpoint detection method and its application on human-computer interaction of intelligent wheelchair. J. Chongqing Univ. Posts Telecommun. (Nat.. Sci. Ed.), 23(4):487-491 (in Chinese).

[17]Millan, J.D.R., Galan, F., Vanhooydonck, D., et al., 2009. Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. Proc. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, p.3361-3364.

[18]Panicker, R.C., Puthusserypady, S., Sun, Y., 2011. An asynchronous P300 BCI with SSVEP-based control state detection. IEEE Trans. Biomed. Eng., 58(6):1781-1788.

[19]Peixoto, N., Nik, H.G., Charkhkar, H., 2013. Voice controlled wheelchairs: fine control by humming. Comput. Methods Programs Biomed., 112(1):156-165.

[20]Rabiner, L.R., Levinson, S.E., Sondhi, M.M., 1983. On the application of vector quantization and hidden Markov models to speaker-independent, isolated word recognition. Bell Syst. Tech. J., 62(4):1075-1105.

[21]Raya, R., Roa, J.O., Rocon, E., et al., 2010. Wearable inertial mouse for children with physical and cognitive impairments. Sens. Actuat. A, 162(2):248-259.

[22]Rebsamen, B., Burdet, E., Guan, C.T., et al., 2006. A brain-controlled wheelchair based on P300 and path guidance. Proc. 1st IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, p.1101-1106.

[23]Rebsamen, B., Guan, C.T., Zhang, H.H., et al., 2010. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans. Neur. Syst. Rehabil. Eng., 18(6):590-598.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE