CLC number: TP183; Q42
On-line Access: 2014-10-09
Received: 2014-04-26
Revision Accepted: 2014-07-24
Crosschecked: 2014-09-17
Cited: 1
Clicked: 7495
Yu-qing Chen, Yu-pu Diao, Jing-gang Duan, Li-yuan Cui, Jia-yi Zhang. Time-dependent changes in eye-specific segregation in the dorsal lateral geniculate nucleus and superior colliculus of postnatal mice[J]. Journal of Zhejiang University Science C, 2014, 15(10): 807-812.
@article{title="Time-dependent changes in eye-specific segregation in the dorsal lateral geniculate nucleus and superior colliculus of postnatal mice",
author="Yu-qing Chen, Yu-pu Diao, Jing-gang Duan, Li-yuan Cui, Jia-yi Zhang",
journal="Journal of Zhejiang University Science C",
volume="15",
number="10",
pages="807-812",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400153"
}
%0 Journal Article
%T Time-dependent changes in eye-specific segregation in the dorsal lateral geniculate nucleus and superior colliculus of postnatal mice
%A Yu-qing Chen
%A Yu-pu Diao
%A Jing-gang Duan
%A Li-yuan Cui
%A Jia-yi Zhang
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 10
%P 807-812
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400153
TY - JOUR
T1 - Time-dependent changes in eye-specific segregation in the dorsal lateral geniculate nucleus and superior colliculus of postnatal mice
A1 - Yu-qing Chen
A1 - Yu-pu Diao
A1 - Jing-gang Duan
A1 - Li-yuan Cui
A1 - Jia-yi Zhang
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 10
SP - 807
EP - 812
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400153
Abstract: Eye-specific segregation in the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) starts from the embryonic stage and continues to develop postnatally until eye-opening in mice. However, there have been few systematic studies on the details of this developmental process. Here, we carried out time-dependent studies of eye-specific segregation in the dLGN and SC. Our results demonstrated that the development of eye-specific segregation in the SC is completed before postnatal day 12 (P12), which is earlier than in the dLGN (P20). During the whole period, ipsilateral and overlapping axonal projections decreased continuously in both the dLGN and SC. On the other hand, contralateral axonal projections showed little change, except for a slight decrease between P8 and P20 in the dLGN.
[1]Bansal, A., Singer, J.H., Hwang, B.J., et al., 2000. Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J. Neurosci., 20(20): 7672-7681.
[2]Blankenship, A.G., Feller, M.B., 2010. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci., 11(1):18-29.
[3]Bouzioukh, F., Daoudal, G., Falk, J., et al., 2006. Semaphorin3A regulates synaptic function of differentiated hippocampal neurons. Eur. J. Neurosci., 23(9):2247-2254.
[4]Brooks, J.M., Su, J., Levy, C., et al., 2013. A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Reports, 5(3):573-581.
[5]Butts, D.A., Kanold, P.O., Shatz, C.J., 2007. A burst-based “Hebbian” learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biol., 5(3):e61.
[6]Deisseroth, K., 2011. Optogenetics. Nat. Methods, 8(1):26-29.
[7]Demas, J., Eglen, S.J., Wong, R.O., 2003. Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. J. Neurosci., 23(7): 2851-2860.
[8]Furman, M., Xu, H.P., Crair, M.C., 2013. Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus. J. Neurophysiol., 110(6):1441-1454.
[9]Hanson, M.G., Landmesser, L.T., 2004. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron, 43(5):687-701.
[10]Huberman, A.D., Niell, C.M., 2011. What can mice tell us about how vision works? Trends Neurosci., 34(9):464-473.
[11]Huberman, A.D., Feller, M.B., Chapman, B., 2008. Mechanisms underlying development of visual maps and receptive fields. Ann. Rev. Neurosci., 31(1):479-509.
[12]Jaubert-Miazza, L., Green, E., Lo, F.S., et al., 2005. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis. Neurosci., 22(5):661-676.
[13]Rossi, F.M., Pizzorusso, T., Porciatti, V., et al., 2001. Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. PNAS, 98(11):6453-6458.
[14]Wei, W., Hamby, A.M., Zhou, K., et al., 2011. Development of asymmetric inhibition underlying direction selectivity in the retina. Nature, 469(7330):402-406.
[15]Xu, H.P., Furman, M., Mineur, Y.S., et al., 2011. An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron, 70(6):1115-1127.
[16]Zhang, J., Ackman, J.B., Xu, H.P., et al., 2012. Visual map development depends on the temporal pattern of binocular activity in mice. Nat. Neurosci., 15(2):298-307.
Open peer comments: Debate/Discuss/Question/Opinion
<1>