CLC number: TP311
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-11-27
Cited: 0
Clicked: 7472
Qin Zhang, Guo-qiang Zhong, Jun-yu Dong. An anchor-based spectral clustering method[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1700262 @article{title="An anchor-based spectral clustering method", %0 Journal Article TY - JOUR
一种基于锚点的谱聚类方法关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Arthur D, Vassilvitskii S, 2007. K-means++: the advantages of careful seeding. 18th Annual ACM-SIAM Symp on Discrete Algorithms, p.1027-1035. ![]() [2]Boutsidis C, Gittens A, Kambadur P, 2015. Spectral clustering via the power method–-provably. 32nd Int Conf on Machine Learning, p.40-48. ![]() [3]Chang XJ, Nie FP, Ma ZG, et al., 2015. A convex formulation for spectral shrunk clustering. 29th AAAI Conf on Artificial Intelligence, p.2532-2538. ![]() [4]Chen WY, Song YQ, Bai HJ, et al., 2011. Parallel spectral clustering in distributed systems. IEEE Trans Patt Anal Mach Intell, 33(3):568-586. ![]() [5]Chen XL, Cai D, 2011. Large scale spectral clustering with landmark-based representation. 25th AAAI Conf on Artificial Intelligence, p.313-318. ![]() [6]Davies DL, Bouldin DW, 1979. A cluster separation measure. IEEE Trans Patt Anal Mach Intell, 1(2):224-227. ![]() [7]Delalleau O, Bengio Y, Le Roux N, 2005. Efficient non-parametric function induction in semi-supervised learning. 10th Int Workshop on Artificial Intelligence and Statistics, p.96-103. ![]() [8]Demvšar J, 2006. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res, 7:1-30. ![]() [9]Fowlkes C, Belongie S, Chung F, et al., 2004. Spectral grouping using the Nyström method. IEEE Trans Patt Anal Mach Intell, 26(2):214-225. ![]() [10]Jia HJ, Ding SF, Xu XZ, et al., 2014. The latest research progress on spectral clustering. Neur Comput Appl, 24(7-8):1477-1486. ![]() [11]Li HZ, Hu XG, Lin YJ, et al., 2016. A social tag clustering method based on common co-occurrence group similarity. Front Inform Technol Electron Eng, 17(2):122-134. ![]() [12]Li JY, Xia YJ, Shan ZY, et al., 2015. Scalable constrained spectral clustering. IEEE Trans Knowl Data Eng, 27(2):589-593. ![]() [13]Lin F, Cohen WW, 2010. Power iteration clustering. 27th Int Conf on Machine Learning, p.655-662. ![]() [14]Liu JL, Wang C, Danilevsky M, et al., 2013. Large-scale spectral clustering on graphs. 23rd Int Joint Conf on Artificial Intelligence, p.1486-1492. ![]() [15]Liu W, He JF, Chang SF, 2010. Large graph construction for scalable semi-supervised learning. 27th Int Conf on Machine Learning, p.679-686. ![]() [16]Luo MN, Nie FP, Chang XJ, et al., 2017. Adaptive unsupervised feature selection with structure regularization. IEEE Trans Neur Netw Learn Syst, 29(4):944-956. ![]() [17]Mall R, Langone R, Suykens JAK, 2013a. FURS: fast and unique representative subset selection retaining large-scale community structure. Soc Netw Anal Min, 3(4):1075-1095. ![]() [18]Mall R, Langone R, Suykens JAK, 2013b. Kernel spectral clustering for big data networks. Entropy, 15(5):1567-1586. ![]() [19]Mall R, Jumutc V, Langone R, et al., 2014. Representative subsets for big data learning using K-NN graphs. IEEE Int Conf on Big Data, p.37-42. ![]() [20]Ng AY, Jordan MI, Weiss Y, et al., 2002. On spectral clustering: analysis and an algorithm. Advances in Neural Information Processing Systems, p.849-856. ![]() [21]Shi JB, Malik J, 2000. Normalized cuts and image segmentation. IEEE Trans Patt Anal Mach Intell, 22(8):888-905. ![]() [22]Song YQ, Chen WY, Bai HJ, et al., 2008. Parallel spectral clustering. In: Daelemans W, Goethals B, Morik K (Eds.), Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, p.374-389. ![]() [23]Tian F, Gao B, Cui Q, et al., 2014. Learning deep representations for graph clustering. 28th AAAI Conf on Artificial Intelligence, p.1293-1299. ![]() [24]von Luxburg U, 2007. A tutorial on spectral clustering. Stat Comput, 17(4):395-416. ![]() [25]Wang L, Leckie C, Ramamohanarao K, et al., 2009. Approximate spectral clustering. In: Theeramunkong T, Kijsirikul B, Cercone N, et al. (Eds.), Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, p.134-146. ![]() [26]Xia RK, Pan Y, Du L, et al., 2014. Robust multi-view spectral clustering via low-rank and sparse decomposition. 28th AAAI Conf on Artificial Intelligence, p.2149-2155. ![]() [27]Xiang T, Gong SG, 2008. Spectral clustering with eigenvector selection. Patt Recog, 41(3):1012-1029. ![]() [28]Xiao P, Li ZY, Guo S, et al., 2016. A $K$ self-adaptive SDN controller placement for wide area networks. Front Inform Technol Electron Eng, 17(7):620-633. ![]() [29]Yan DH, Huang L, Jordan MI, 2009. Fast approximate spectral clustering. 15th Int Conf on Knowledge Discovery and Data Mining, p.907-916. ![]() [30]Yang Y, Xu D, Nie FP, et al., 2010. Image clustering using local discriminant models and global integration. IEEE Trans Image Process, 19(10):2761-2773. ![]() [31]Yang Y, Shen HT, Nie FP, et al., 2011. Nonnegative spectral clustering with discriminative regularization. 25th AAAI Conf on Artificial Intelligence, p.555-560. ![]() [32]Yang Y, Nie F, Xu D, et al., 2012. A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans Patt Anal Mach Intell, 34(4):723-742. ![]() [33]Zhang XC, Zong LL, You QZ, et al., 2016. Sampling for Nystrom extension-based spectral clustering: incremental perspective and novel analysis. ACM Trans Knowl Discov Data, 11(1):1-25. ![]() [35]Zhu XJ, Lafferty J, 2005. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. 22nd Int Conf on Machine Learning, p.1052-1059. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>