CLC number: TP37
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-06-10
Cited: 0
Clicked: 6622
Citations: Bibtex RefMan EndNote GB/T7714
Rui Guo, Xuan-jing Shen, Xiao-yu Dong, Xiao-li Zhang. Multi-focus image fusion based on fully convolutional networks[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1900336 @article{title="Multi-focus image fusion based on fully convolutional networks", %0 Journal Article TY - JOUR
基于全卷积网络的多焦距图像融合算法1吉林大学符号计算与知识工程教育部重点实验室,中国长春市,130012 2吉林大学计算机科学与技术学院,中国长春市,130012 摘要:提出一种多焦距图像融合方法,在该算法中构造用于焦点检测的全卷积网络(fully convolutional network for focus detection,FD-FCN)。为获得更精确的焦点检测图谱,在该网络中添加跳层,从而在生成图谱过程中同时提供详细和抽象的视觉信息。基于数据集CIFAR-10,为该网络构建一个新的训练数据集。运用FD-FCN的图像融合算法包含3个步骤:使用FD-FCN获得焦点图谱,通过对焦点图谱进行形态学处理生成决策图,使用决策图进行图像融合。开展了多组实验,主客观评估结果均表明该融合方法优于同类先进算法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Amin-Naji M, Aghagolzadeh A, Ezoji M, 2019. Ensemble of CNN for multi-focus image fusion. Inform Fus, 51:201- 214. ![]() [2]Aslantas V, Kurban R, 2010. Fusion of multi-focus images using differential evolution algorithm. Expert Syst Appl, 37(12):8861-8870. ![]() [3]Ayyalasomayajula KR, Malmberg F, Brun A, 2019. PDNet: semantic segmentation integrated with a primal-dual network for document binarization. Patt Recogn Lett, 121:52-60. ![]() [4]Bai XZ, Zhang Y, Zhou FG, et al., 2015. Quadtree-based multi-focus image fusion using a weighted focus-measure. Inform Fus, 22:105-118. ![]() [5]Bavirisetti DP, Dhuli R, 2016. Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform. IEEE Sens J, 16(1):203-209. ![]() [6]Chen Y, Qin Z, 2015. Gradient-based compressive image fusion. Front Inform Technol Electron Eng, 16(3):227- 237. ![]() [7]Han Y, Cai YZ, Cao Y, et al., 2013. A new image fusion performance metric based on visual information fidelity. Inform Fus, 14(2):127-135. ![]() [8]He KM, Sun J, Tang XO, 2013. Guided image filtering. IEEE Trans Patt Anal Mach Intell, 35(6):1397-1409. ![]() [9]Huang W, Jing ZL, 2007. Multi-focus image fusion using pulse coupled neural network. Patt Recogn Lett, 28(9): 1123-1132. ![]() [10]Huhle B, Schairer T, Jenke P, et al., 2010. Fusion of range and color images for denoising and resolution enhancement with a non-local filter. Comput Vis Image Understand, 114(12):1336-1345. ![]() [11]Juočas L, Raudonis V, Maskeliūnas R, et al., 2019. Multi- focusing algorithm for microscopy imagery in assembly line using low-cost camera. Int J Adv Manuf Technol, 102(9-12):3217-3227. ![]() [12]Kim KI, Kwon Y, 2010. Single-image super-resolution using sparse regression and natural image prior. IEEE Trans Patt Anal Mach Intell, 32(6):1127-1133. ![]() [13]LeCun Y, Bengio Y, 1995. Convolutional networks for images, speech, and time-series. In: Arbib MA (Ed.), The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, p.255-258. ![]() [14]Li ST, Kwok JT, Wang YN, 2002. Multifocus image fusion using artificial neural networks. Patt Recogn Lett, 23(8): 985-997. ![]() [15]Li ST, Kang XD, Hu JW, 2013a. Image fusion with guided filtering. IEEE Trans Image Process, 22(7):2864-2875. ![]() [16]Li ST, Kang XD, Hu JW, et al., 2013b. Image matting for fusion of multi-focus images in dynamic scenes. Inform Fus, 14(2):147-162. ![]() [17]Li ST, Kang XD, Fang LY, et al., 2017. Pixel-level image fusion: a survey of the state of the art. Inform Fus, 33: 100-112. ![]() [18]Liu Y, Chen X, Peng H, et al., 2017. Multi-focus image fusion with a deep convolutional neural network. Inform Fus, 36:191-207. ![]() [19]Mustafa HT, Yang J, Zareapoor M, 2019. Multi-scale convolutional neural network for multi-focus image fusion. Image Vis Comput, 85:26-35. ![]() [20]Piella G, Heijmans H, 2003. A new quality metric for image fusion. Proc Int Conf on Image Processing, p.173-176. ![]() [21]Qu GH, Zhang DL, Yan PF, 2002. Information measure for performance of image fusion. Electron Lett, 38(7):313- 315. ![]() [22]Ren WQ, Zhang JG, Xu XY, et al., 2019. Deep video dehazing with semantic segmentation. IEEE Trans Image Process, 28(4):1895-1908. ![]() [23]Saha A, Bhatnagar G, Wu QMJ, 2013. Mutual spectral residual approach for multifocus image fusion. Dig Signal Process, 23(4):1121-1135. ![]() [24]Saleem A, Beghdadi A, Boashash B, 2011. Image quality metrics based multifocus image fusion. 3rd European Workshop on Visual Information Processing, p.77-82. ![]() [25]Shelhamer E, Long J, Darrell T, 2017. Fully convolutional networks for semantic segmentation. IEEE Trans Patt Anal Mach Intell, 39(4):640-651. ![]() [26]Wang B, Yuan XY, Gao XB, et al., 2019. A hybrid level set with semantic shape constraint for object segmentation. IEEE Trans Cybern, 49(5):1558-1569. ![]() [27]Xydeas CS, Petrovic V, 2000. Objective image fusion performance measure. Electron Lett, 36(4):308-309. ![]() [28]Yang Y, Huang SY, Gao JF, et al., 2014. Multi-focus image fusion using an effective discrete wavelet transform based algorithm. Meas Sci Rev, 14(2):102-108. ![]() [29]Yang Y, Tong S, Huang SY, et al., 2015. Multifocus image fusion based on NSCT and focused area detection. IEEE Sens J, 15(5):2824-2838. ![]() [30]Zhang BH, Lu XQ, Jia WT, 2013. A multi-focus image fusion algorithm based on an improved dual-channel PCNN in NSCT domain. Optik, 124(20):4104-4109. ![]() [31]Zhang Q, Levine MD, 2016. Robust multi-focus image fusion using multi-task sparse representation and spatial context. IEEE Trans Image Process, 25(5):2045-2058. ![]() [32]Zhao WD, Wang D, Lu HC, 2019. Multi-focus image fusion with a natural enhancement via a joint multi-level deeply supervised convolutional neural network. IEEE Trans Circ Syst Video Technol, 29(4):1102-1115. ![]() [33]Zhou ZQ, Li S, Wang B, 2014. Multi-scale weighted gradient- based fusion for multi-focus images. Inform Fus, 20:60- 72. ![]() [34]Zhu XB, Zhang XM, Zhang XY, et al., 2019. A novel framework for semantic segmentation with generative adversarial network. J Vis Commun Image Represent, 58:532-543. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>