CLC number: TM301.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-10-29
Cited: 0
Clicked: 5273
Wei Chen, Gui-chu Wu, You-tong Fang, Ji-en Ma. Thermal optimization of a totally enclosed forced ventilated permanent magnet traction motor using lumped parameter and partial computational fluid dynamics modeling[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700649 @article{title="Thermal optimization of a totally enclosed forced ventilated permanent magnet traction motor using lumped parameter and partial computational fluid dynamics modeling", %0 Journal Article TY - JOUR
Abstract: This paper presents thermal issue in a traction motor. Power loss and thermal design is among the key issues of motor design and optimization. In this paper, the thermal analysis is based on lumped parameter method, and CFD is used for determining some coefficients. The analysis is verified by experiments.
基于全局热网络和局部流体动力学建模的全封闭永磁牵引电机热性能优化创新点:1. 通过耦合局部流体动力学模型的方法求解电机复杂冷却风道内的对流传热系数,并在全局热网络模型的框架内得到快速、准确的电机温升结果以用于结构优化; 2. 在冷却风道中引入栅格结构,采用热性能分析模型优化冷却结构,提升电机热性能; 3. 通过三维流体动力学模型计算电机局部温升最大值,并提出一种预测特定结构下电机铁损工作阈值的工程方法. 方法:1. 采用热网络法建立全局热网络模型(图3),并通过耦合局部流体动力学模型计算风道内的热网络参数(图4和6); 2. 应用田口设计法对电机风道结构进行优化,并研制样机进行验证(计算与试验结果见表5); 3. 假设铁损的谐波附加值与磁密值成正比,通过三维流体动力学模型计算给出端部绕组、永磁体温升值与铁损的预测曲线,并用样机试验进行验证. 结论:1. 采用全局热网络和局部流体动力学建模的方法可以快速、正确地计算复杂冷却结构下的电机温升分布,且优化后的冷却结构至少可以提升文中电机15%的热性能; 2. 本文提出的优化模型适用于全封闭风冷或者水冷等冷却结构相对独立且尚无经验公式可参考的电机热性能优化设计; 3. 铁损工作阈值的预测方法可以为电磁和控制系统设计提供参考. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bergman TL, Incropera FP, DeWitt DP, et al., 1990. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, USA. ![]() [2]Boglietti A, Cavagnino A, 2007. Analysis of the endwinding cooling effects in TEFC induction motors. IEEE Transactions on Industry Applications, 43(5):1214-1222. ![]() [3]Boglietti A, Cavagnino A, Staton D, 2008. Determination of critical parameters in electrical machine thermal models. IEEE Transactions on Industry Applications, 44(4):1150-1159. ![]() [4]Boglietti A, Cavagnino A, Staton D, et al., 2009. Evolution and modern approaches for thermal analysis of electrical machines. IEEE Transactions on Industrial Electronics, 56(3):871-882. ![]() [5]Chowdhury SK, Baski PK, 2010. A simple lumped parameter thermal model for electrical machine of TEFC design. Joint International Conference on Power Electronics, Drives, and Energy Systems & Power India, p.1-7. ![]() [6]El-Refaie AM, Jahns TM, Mccleer PJ, et al., 2006. Experimental verification of optimal flux weakening in surface PM machines using concentrated windings. IEEE Transactions on Industry Applications, 42(2):443-453. ![]() [7]Feng J, 2012. Development overview and application challenges of permanent magnet synchronous traction system for rail transit. High Power Converter Technology, 3:1-7 (in Chinese). ![]() [8]Hao H, Fei WZ, Miao DM, et al., 2016. Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts. Frontiers of Information Technology and Electronic Engineering, 17(8):814-824. ![]() [9]He HB, Yao DW, Wu F, 2017. A reduced and optimized kinetic mechanism for coke oven gas as a clean alternative vehicle fuel. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(2):511-530. ![]() [10]Huang XY, Zhang JC, Sun CM, et al., 2015. A combined simulation of high speed train permanent magnet traction system using dynamic reluctance mesh model and Simulink. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(8):607-615. ![]() [11]Huang Y, Zhu J, Guo Y, 2009. Thermal analysis of highspeed SMC motor based on thermal network and 3-D FEA with rotational core loss included. IEEE Transactions on Magnetics, 45(10):4680-4683. ![]() [12]Ji SM, Ge JQ, Tan DP, 2017. Wall contact effects of particle-wall collision process in a two-phase particle fluid. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(3):958-973. ![]() [13]Jungreuthmayer C, Bauml T, Winter O, et al., 2011. A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics. IEEE Transactions on Industrial Electronics, 59(12):4568-4578. ![]() [14]Kral C, Haumer A, Bauml T, 2008. Thermal model and behavior of a totally-enclosed-water-cooled squirrel-cage induction machine for traction applications. IEEE Transactions on Industrial Electronics, 55(10):3555-3565. ![]() [15]Kral C, Haumer A, Haigis M, et al., 2009. Comparison of a CFD analysis and a thermal equivalent circuit model of a TEFC induction machine with measurements. IEEE Transactions on Energy Conversion, 24(4):809-818. ![]() [16]Li Q, Zhong J, Li Y, et al., 2010. Study on a C-class solvent-free silicone impregnating varnish. IEEE Transactions on Dielectrics and Electrical Insulation, 17(3):785-790. ![]() [17]Mademlis C, Kioskeridis I, Margaris N, 2004. Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives. IEEE Transactions on Energy Conversion, 19(4):715-723. ![]() [18]Mellor PH, Roberts D, Turner DR, 1991. Lumped parameter thermal model for electrical machines of TEFC design. IEE Proceedings B (Electric Power Applications), 138(5):205-218. ![]() [19]Mi C, Slemon GR, Bonert R, 2003. Modeling of iron losses of permanent-magnet synchronous motors. IEEE Transactions on Industry Applications, 39(3):734-742. ![]() [20]Micallef C, 2006. End Winding Cooling in Electric Machines. PhD Thesis, University of Nottingham, Nottingham, UK. ![]() [21]Mizuno S, Noda S, Matsushita M, et al., 2013. Development of a totally enclosed fan-cooled traction motor. IEEE Transactions on Industry Applications, 49(4):1508-1514. ![]() [22]Nategh S, Wallmark O, Leksell M, et al., 2012. Thermal analysis of a PMaSRM using partial FEA and lumped parameter modeling. IEEE Transactions on Energy Conversion, 27(2):477-488. ![]() [23]Nategh S, Huang Z, Krings A, et al., 2013. Thermal modeling of directly cooled electric machines using lumped parameter and limited CFD analysis. IEEE Transactions on Energy Conversion, 28(4):979-990. ![]() [24]Qian JY, Liu BZ, Jin ZJ, et al., 2016. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(5):54-64. ![]() [25]Shih TH, Liou WW, Shabbir A, et al., 1995. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24(3):227-238. ![]() [26]Taguchi G, Chowdhury S, Wu Y, 2007. Introduction to orthogonal arrays. In: Taguchi’s Quality Engineering Handbook. John Wiley & Sons, USA, p.584-596. ![]() [27]Tan Z, Song XG, Ji B, et al., 2015. 3D thermal analysis of a permanent magnet motor with cooling fans. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(8):616-621. ![]() [28]Wei Y, Meng D, Wen J, 1998. Heat Transfer in Motors. China Machine Press, Beijing, China (in Chinese). ![]() [29]Wesseling P, 2001. Principles of Computational Fluid Dynamics. Springer, New York, USA. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>