
CLC number: U441.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-06-15
Cited: 0
Clicked: 6118
Yan-long Xie, Binbin Li, Jian Guo. Bayesian operational modal analysis of a long-span cable-stayed sea-crossing bridge[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1900511 @article{title="Bayesian operational modal analysis of a long-span cable-stayed sea-crossing bridge", %0 Journal Article TY - JOUR
期望最大化贝叶斯模态识别算法在跨海斜拉桥运营模态分析中的应用创新点:1. 通过使用期望最大化贝叶斯FFT算法,使得基于贝叶斯的运营模态分析速度更快且收敛性更高; 2. 成功识别了2.5 Hz以内的19阶模态的自然频率、阻尼比以及振型,同时得到了识别参数的不确定性大小. 方法:通过应用贝叶斯模态识别算法对某跨海斜拉桥的运营模态数据进行分析,并研究模态参数及其不确定性. 结论:应用期望最大化贝叶斯FFT算法能够高效地识别2.5 Hz以内的19阶模态的自然频率、阻尼比和结构振型,并能得出参数识别的不确定性大小. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Au SK, 2011. Fast Bayesian FFT method for ambient modal identification with separated modes. Journal of Engineering Mechanics, 137(3):214-226. ![]() [2]Au SK, 2012. Fast Bayesian ambient modal identification in the frequency domain, Part I: posterior most probable value. Mechanical Systems and Signal Processing, 26:60-75. ![]() [3]Au SK, 2014. Uncertainty law in ambient modal identification —Part I: theory. Mechanical Systems and Signal Processing, 48(1-2):15-33. ![]() [4]Au SK, Zhang FL, Ni YC, 2013. Bayesian operational modal analysis: theory, computation, practice. Computers & Structures, 126:3-14. ![]() [5]Brincker R, Ventura CE, 2015. Introduction to Operational Modal Analysis. John Wiley & Sons, Chichester, UK. ![]() [6]Brincker R, Zhang LM, Andersen P, 2000. Modal identification from ambient responses using frequency domain decomposition. Proceedings of the International Modal Analysis Conference (IMAC), p.625-630. ![]() [7]Brownjohn JMW, Magalhaes F, Caetano E, et al., 2010. Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Engineering Structures, 32(8):2003-2018. ![]() [8]Doebling SW, Farrar CR, Prime MB, 1998. A summary review of vibration-based damage identification methods. The Shock and Vibration Digest, 30(2):91-105. ![]() [9]Felber AJ, 1993. Development of a Hybrid Bridge Evaluation System. PhD Thesis, University of British Columbia, Vancouver, Canada. ![]() [10]Guo J, 2010. Current principal technique status and challenges to be confronted in construction of sea-crossing bridges. Bridge Construction, (6):66-69 (in Chinese). ![]() [11]Guo J, Chen Y, Sun BN, 2005. Experimental study of structural damage identification based on WPT and coupling NN. Journal of Zhejiang University-SCIENCE A, 6(7):663-669. ![]() [12]Ibrahim SR, 1977. Random decrement technique for modal identification of structures. Journal of Spacecraft and Rockets, 14(11):696-700. ![]() [13]Kim H, Melhem H, 2004. Damage detection of structures by wavelet analysis. Engineering Structures, 26(3):347-362. ![]() [14]Li BB, Au SK, 2019. An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes. Mechanical Systems and Signal Processing, 132:490-511. ![]() [15]Li C, Li HN, Hao H, et al., 2018. Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites. Engineering Structures, 165:441-456. ![]() [16]Liu H, 2006. Hydrodynamic problems associated with construction of sea-crossing bridges. Journal of Hydrodynamics, Ser. B, 18(S3):13-18. ![]() [17]Liu YC, Loh CH, Ni YQ, 2013. Stochastic subspace identification for output-only modal analysis: application to super high-rise tower under abnormal loading condition. Earthquake Engineering & Structural Dynamics, 42(4):477-498. ![]() [18]Mevel L, Goursat M, Basseville M, 2003. Stochastic subspace-based structural identification and damage detection and localisation—application to the Z24 bridge benchmark. Mechanical Systems and Signal Processing, 17(1):143-151. ![]() [19]Peeters B, de Roeck G, 2001. Stochastic system identification for operational modal analysis: a review. Journal of Dynamic Systems, Measurement, and Control, 123(4):659-667. ![]() [20]Ren WX, de Roeck G, 2002. Structural damage identification using modal data. II: test verification. Journal of Structural Engineering, 128(1):96-104. ![]() [21]Reynders E, Houbrechts J, de Roeck G, 2012. Fully automated (operational) modal analysis. Mechanical Systems and Signal Processing, 29:228-250. ![]() [22]Sun M, Alamdari MM, Kalhori H, 2017. Automated operational modal analysis of a cable-stayed bridge. Journal of Bridge Engineering, 22(12):05017012. ![]() [23]Taha MMR, Noureldin A, Lucero JL, et al., 2006. Wavelet transform for structural health monitoring: a compendium of uses and features. Structural Health Monitoring, 5(3):267-295. ![]() [24]Xu SQ, Ma RJ, Wang DL, et al., 2019. Prediction analysis of vortex-induced vibration of long-span suspension bridge based on monitoring data. Journal of Wind Engineering and Industrial Aerodynamics, 191:312-324. ![]() [25]Zhang LM, Brincker R, Andersen P, 2005. An overview of operational modal analysis: major development and issues. Proceedings of the 1st International Operational Modal Analysis Conference, p.12. ![]() [26]Zhou Y, Sun LM, 2018. Effects of high winds on a long-span sea-crossing bridge based on structural health monitoring. Journal of Wind Engineering and Industrial Aerodynamics, 174:260-268. ![]() [27]Zhou Y, Sun LM, 2019. Effects of environmental and operational actions on the modal frequency variations of a sea-crossing bridge: a periodicity perspective. Mechanical Systems and Signal Processing, 131:505-523. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>