CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4522
Citations: Bibtex RefMan EndNote GB/T7714
Xia ZHOU, Xiao-qin ZHI, Xu GAO, Hong CHEN, Shao-long ZHU, Kai WANG, Li-min QIU, Xiao-bin ZHANG. Cavitation evolution and damage by liquid nitrogen in a globe valve[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2100168 @article{title="Cavitation evolution and damage by liquid nitrogen in a globe valve", %0 Journal Article TY - JOUR
低温截止阀内液氮空化演变和危害研究创新点:1.在数值模拟中加入能量方程,并考虑低温流体在空化过程中压力和温度的相互影响;2.分析在不同阀门开度下液氮空化的发展过程和壁面不同位置受到的压力冲击。 方法:1.利用Fluent空化模型和Mixture模型,建立低温截止阀空化模型(图3);2.模拟不同开度下阀内液氮的空化过程(图6~9);3.分析壁面各监测点的压力变化情况,提取压力幅值和流体脉动频率,并与阀门固有频率比较(图12,13,15和20)。 结论:低温截止阀内液氮空化呈现周期性特征,并且空化周期随阀门的开度增大而减小;2.最大压力脉冲峰值出现在中等开度(66%);3.最大振动位移出现在阀体处,且存在临界管长,使得阀门系统的固有频率和流体脉动频率相等。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AmiranteR, DistasoE, TamburranoP, 2014. Experimental and numerical analysis of cavitation in hydraulic proportional directional valves. Energy Conversion and Management, 87:208-219. ![]() [2]ChenTR, MuZD, HuangB, et al., 2021. Dynamic instability analysis of cavitating flow with liquid nitrogen in a converging–diverging nozzle. Applied Thermal Engineering, 192:116870. ![]() [3]ChernMJ, HsuPH, ChengYJ, et al., 2013. Numerical study on cavitation occurrence in globe valve. Journal of Energy Engineering, 139(1):25-34. ![]() [4]CominiG, Del GiudiceS, 1985. A (k-ε) model of turbulent flow. Numerical Heat Transfer Applications, 8(2):133-147. ![]() [5]GholamiH, YaghoubiH, AlizadehM, 2015. Numerical analysis of cavitation phenomenon in a vaned ring-type needle valve. Journal of Energy Engineering, 141(4):04014053. ![]() [6]HordJ, 1973. Cavitation in Liquid Cryogens, II-Hydrofoil. NASA Contractor Report, CR-2156, Washington, USA. ![]() [7]IshimotoJ, KamijoK, 2004. Numerical study of cavitating flow characteristics of liquid helium in a pipe. International Journal of Heat and Mass Transfer, 47(1):149-163. ![]() [8]JiangS, GaoH, SunJS, et al., 2012. Modeling fixed triangular valve tray hydraulics using computational fluid dynamics. Chemical Engineering and Processing: Process Intensification, 52:74-84. ![]() [9]JinZJ, GaoZX, QianJY, et al., 2018. A parametric study of hydrodynamic cavitation inside globe valves. Journal of Fluids Engineering, 140(3):031208. ![]() [10]JinZJ, QiuC, JiangCH, et al., 2020. Effect of valve core shapes on cavitation flow through a sleeve regulating valve. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(1):1-14. ![]() [11]KoS, SongS, 2015. Effects of design parameters on cavitation in a solenoid valve for an electric vehicle braking system and design optimization. Journal of Mechanical Science and Technology, 29(11):4757-4765. ![]() [12]KumagaiK, RyuS, OtaM, et al., 2016. Investigation of poppet valve vibration with cavitation. International Journal of Fluid Power, 17(1):15-24. ![]() [13]LeeMG, LimCS, HanSH, 2016. Shape design of the bottom plug used in a 3-way reversing valve to minimize the cavitation effect. International Journal of Precision Engineering and Manufacturing, 17(3):401-406. ![]() [14]LeiL, YanH, ZhangHX, et al., 2018. Numerical simulation and experimental research of the flow force and forced vibration in the nozzle-flapper valve. Mechanical Systems and Signal Processing, 99:550-566. ![]() [15]LiXJ, ShenTJ, LiPC, et al., 2020. Extended compressible thermal cavitation model for the numerical simulation of cryogenic cavitating flow. International Journal of Hydrogen Energy, 45(16):10104-10118. ![]() [16]LinZH, LiJY, JinZJ, et al., 2021. Fluid dynamic analysis of liquefied natural gas flow through a cryogenic ball valve in liquefied natural gas receiving stations. Energy, 226: 120376. ![]() [17]MiwaS, MoriM, HibikiT, 2015. Two-phase flow induced vibration in piping systems. Progress in Nuclear Energy, 78:270-284. ![]() [18]Palau-SalvadorG, González-AltozanoP, Arviza-ValverdeJ, 2008. Three-dimensional modeling and geometrical influence on the hydraulic performance of a control valve. Journal of Fluids Engineering, 130(1):011102. ![]() [19]PinhoJ, PeveroniL, VetranoMR, et al., 2019. Experimental and numerical study of a cryogenic valve using liquid nitrogen and water. Aerospace Science and Technology, 93:105331. ![]() [20]PlessetMS, ProsperettiA, 2003. Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 9:145-185. ![]() [21]RodioMG, de GiorgiMG, FicarellaA, 2012. Influence of convective heat transfer modeling on the estimation of thermal effects in cryogenic cavitating flows. International Journal of Heat and Mass Transfer, 55(23-24):6538-6554. ![]() [22]SaitoS, ShibataM, FukaeH, et al., 2007. Computational cavitation flows at inception and light stages on an axial-flow pump blade and in a cage-guided control valve. Journal of Thermal Science, 16(4):337-345. ![]() [23]SpaldingDB, 1971. One-dimensional two-phase flow: Graham B. Wallis. McGraw-Hill, New York (1969). International Journal of Heat and Mass Transfer, 14(8):1229. ![]() [24]SteckelmacherW, 1994. History and Origins of Cryogenics: Edited by Ralph G Scurlock, Monographs on Cryogenics, Vol.8. Oxford University Press, Oxford 1992. ISBN 0-19-854814-1, 653 pp. Price £95.00. Vacuum, 45(8):919. ![]() [25]TabriziAS, AsadiM, XieG, et al., 2014. Computational fluid-dynamics-based analysis of a ball valve performance in the presence of cavitation. Journal of Engineering Thermophysics, 23(1):27-38. ![]() [26]ValdesJR, RodríguezJM, MongeR, et al., 2014. Numerical simulation and experimental validation of the cavitating flow through a ball check valve. Energy Conversion and Management, 78:776-786. ![]() [27]WatanabeM, NshinoK, HagiwaraT, et al., 2008. Flow-induced vibration of a control valve in a cavitating flow. The Proceedings of the Dynamics & Design Conference, 2008:240-1-240-5. ![]() [28]XuB, FengJ, WanFL, et al., 2020. Numerical investigation of modified cavitation model with thermodynamic effect in water and liquid nitrogen. Cryogenics, 106:103049. ![]() [29]XuQ, FengJX, ZhangSC, 2017. Influence of end side displacement load on stress and deformation of “L”-type large-diameter buried pipe network. Applied Thermal Engineering, 126:245-254. ![]() [30]XueR, ChenL, ZhongX, et al., 2019. Unsteady cavitation of liquid nitrogen flow in spray nozzles under fluctuating conditions. Cryogenics, 97:144-148. ![]() [31]YiDY, LuL, ZouJ, et al., 2015. Interactions between poppet vibration and cavitation in relief valve. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 229(8):1447-1461. ![]() [32]YuL, ChenH, GaoX, et al., 2019. Simulations on LN2–VN2 flooding phenomenon in inclined tubes using a modified AIAD model. Cryogenics, 97:100-108. ![]() [33]ZhangXB, ChenJY, YaoL, et al., 2014. Research and development of large-scale cryogenic air separation in China. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(5):309-322. ![]() [34]ZhuJK, 2018. Study on Unsteady Characteristics and Mechanisms of Cryogenic Cavitation. PhD Thesis, Zhejiang University, Hangzhou, China(in Chinese). ![]() [35]ZhuJK, ChenY, ZhaoDF, et al., 2015. Extension of the Schnerr–Sauer model for cryogenic cavitation. European Journal of Mechanics-B/Fluids, 52:1-10. ![]() [36]ZhuJK, ZhaoDF, XuL, et al., 2016. Interactions of vortices, thermal effects and cavitation in liquid hydrogen cavitating flows. International Journal of Hydrogen Energy, 41(1):614-631. ![]() [37]ZhuSL, LiY, ZhangRP, et al., 2019. Experimental study on the condensation characteristics of nitrogen with non-condensable gas. Cryogenics, 98:29-38. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>