CLC number: Q39
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-11-08
Cited: 0
Clicked: 5154
Hui An, Chang-shuai Wei, Oliver Wang, Da-hui Wang, Liang-wen Xu, Qing Lu, Cheng-yin Ye. An ensemble-based likelihood ratio approach for family-based genomic risk prediction[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1800162 @article{title="An ensemble-based likelihood ratio approach for family-based genomic risk prediction", %0 Journal Article TY - JOUR
基于家系数据集群化似然比算法的疾病基因组遗传风险预测研究创新点:期望新方法能够捕捉小或中等边际效应的遗传因子,及其相互作用,与基于家族史或家系数据的现有风险预测方法相比,具有更高的预测准确性. 方法:在这项研究中,我们提出了集群化似然比(ELR)的新方法,Fam-ELR,用于家系数据的基因组疾病风险预测.Fam-ELR采用集群化的受试者工作特征曲线(ROC)方法来考虑家系样本内部的相关性,并使用计算有效的集群树进行变量选择和模型构建. 结论:通过模拟,Fam-ELR显示了其在各种疾病遗传模型和谱系结构中的稳健性,并且获得了比现有的两种基于家系数据的风险预测方法更好的性能.同时,在基于全基因组行为障碍家系数据集的实际应用中,Fam-ELR展示了其将潜在风险预测因子和其相互作用整合到模型中以提高准确性的能力,尤其是在全基因组水平上.通过比较现有方法,例如遗传风险评分方法等,Fam-ELR被证实具有将较小或中等边际效应的遗传变异及其相互作用纳入改进的风险预测模型的能力.因此,它是一种强有力且实用的方法,适用于基于家系数据的高维度遗传风险预测中,特别是对于病因未知或知之甚少的人类复杂疾病. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abraham G, Inouye M, 2015. Genomic risk prediction of complex human disease and its clinical application. Curr Opin Genet Dev, 33:10-16. ![]() [2]Anney RJL, Lasky-Su J, Ó'Dúshláine C, et al., 2008. Conduct disorder and ADHD: evaluation of conduct problems as a categorical and quantitative trait in the international multicentre ADHD genetics study. Am J Med Genet B Neuropsychiatr Genet, 147B(8):1369-1378. ![]() [3]Chatterjee N, Wheeler B, Sampson J, et al., 2013. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat Genet, 45(4):400-405. ![]() [4]Choi S, Bae S, Park T, 2016. Risk prediction using genome-wide association studies on type 2 diabetes. Genomics Inform, 14(4):138-148. ![]() [5]de los Campos G, Naya H, Gianola D, et al., 2009. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics, 182(1):375-385. ![]() [6]Ferreira MAR, O'Donovan MC, Meng YA, et al., 2008. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet, 40(9):1056-1058. ![]() [7]Ginsburg GS, Willard HF, 2009. Genomic and personalized medicine: foundations and applications. Transl Res, 154(6):277-287. ![]() [8]Goes FS, Hamshere ML, Seifuddin F, et al., 2012. Genome-wide association of mood-incongruent psychotic bipolar disorder. Transl Psychiatry, 2(10):e180. ![]() [9]Goes FS, McGrath J, Avramopoulos D, et al., 2015. Genome-wide association study of schizophrenia in Ashkenazi Jews. Am J Med Genet B Neuropsychiatr Genet, 168(8):649-659. ![]() [10]Janssens ACJW, van Duijn CM, 2008. Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet, 17(R2):R166-R173. ![]() [11]Kazdin AE, 1997. Practitioner review: psychosocial treatments for conduct disorder in children. J Child Psychol Psychiatry, 38(2):161-178. ![]() [12]Lasky-Su J, Neale BM, Franke B, et al., 2008. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet, 147B(8):1345-1354. ![]() [13]Maller J, George S, Purcell S, et al., 2006. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet, 38(9):1055-1059. ![]() [14]Marchini J, Donnelly P, Cardon LR, 2005. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet, 37(4):413-417. ![]() [15]Meigs JB, Shrader P, Sullivan LM, et al., 2008. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med, 359(21):2208-2219. ![]() [16]Need AC, Attix DK, McEvoy JM, et al., 2009. A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB. Hum Mol Genet, 18(23):4650-4661. ![]() [17]Obuchowski NA, 1997. Nonparametric analysis of clustered ROC curve data. Biometrics, 53(2):567-578. ![]() [18]Pappa I, St Pourcain B, Benke K, et al., 2016. A genome-wide approach to children’s aggressive behavior: the EAGLE consortium. Am J Med Genet B Neuropsychiatr Genet, 171(5):562-572. ![]() [19]Rietveld CA, Esko T, Davies G, et al., 2014. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci USA, 111(38):13790-13794. ![]() [20]Sherva R, Wang Q, Kranzler H, et al., 2016. Genome-wide association study of cannabis dependence severity, novel risk variants, and shared genetic risks. JAMA Psychiatry, 73(5):472-480. ![]() [21]Shieh Y, Hu DL, Ma L, et al., 2016. Breast cancer risk prediction using a clinical risk model and polygenic risk score. Breast Cancer Res Treat, 159(3):513-525. ![]() [22]Smith JA, Ware EB, Middha P, et al., 2015. Current applications of genetic risk scores to cardiovascular outcomes and subclinical phenotypes. Curr Epidemiol Rep, 2(3):180-190. ![]() [23]Sonuga-Barke EJS, Lasky-Su J, Neale BM, et al., 2008. Does parental expressed emotion moderate genetic effects in ADHD? An exploration using a genome wide association scan. Am J Med Genet B Neuropsychiatr Genet, 147B(8):1359-1368. ![]() [24]Wackerly DD, Mendenhall III W, Scheaffer RL, 2008. Mathematical Statistics with Applications, 7th Ed. Thomson, Belmont, CA, USA. ![]() [25]Wei CS, Anthony JC, Lu Q, 2012. Genome-environmental risk assessment of cocaine dependence. Front Genet, 3:83. ![]() [26]Wei CS, Schaid DJ, Lu Q, 2013. Trees assembling Mann-Whitney approach for detecting genome-wide joint association among low-marginal-effect loci. Genet Epidemiol, 37(1):84-91. ![]() [27]Wen YL, Burt A, Lu Q, 2017. Risk prediction modeling on family-based sequencing data using a random field method. Genetics, 207(1):63-73. ![]() [28]Wray NR, Lee SH, Mehta D, et al., 2014. Research review: polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry, 55(10):1068-1087. ![]() [29]Yang J, Benyamin B, McEvoy BP, et al., 2010. Common SNPs explain a large proportion of the heritability for human height. Nat Genet, 42(7):565-569. ![]() [30]Ye C, Zhu J, Lu Q, 2011a. A clustered optimal ROC curve method for family-based genetic risk prediction. Stat Interface, 4(3):373-380. ![]() [31]Ye C, Cui Y, Wei C, et al., 2011b. A non-parametric method for building predictive genetic tests on high-dimensional data. Hum Hered, 71(3):161-170. ![]() [32]List of electronic supplementary materials ![]() [33]Table S1 Significant interaction effects identified by logistic regression in the genome-wide prediction ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>