
CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5481
Erkui YUE, Hua TAO, Jianhong XU. Genome-wide analysis of microRNA156 and its targets, the genes encoding SQUAMOSA promoter-binding protein-like (SPL) transcription factors, in the grass family Poaceae[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2000519 @article{title="Genome-wide analysis of microRNA156 and its targets, the genes encoding SQUAMOSA promoter-binding protein-like (SPL) transcription factors, in the grass family Poaceae", %0 Journal Article TY - JOUR
禾本科microRNA156及其靶基因SPL转录因子的全基因组分析创新点:在5个已完成全基因组测序的禾本科作物中鉴定miR156及其靶基因SPL的拷贝数,利用比较基因组学和分子进化方法并结合DNA甲基化组数据阐明miR156及其靶基因SPL的起源和进化机制。 方法:基于全基因测序序列鉴定SPL基因和MIR156基因及其成熟序列在基因组中的拷贝数,利用MEGA X软件构建起进化树;下载水稻不同组织中SPL和MIR156基因的转录组和DNA甲基化组数据,并根据软件与程序检测其表达量与DNA甲基化水平。 结论:MIR156和SPL具有不同的起源和进化机制,SPL似乎是由垂直进化产生的,而MIR156似乎是对成熟序列的强烈进化选择产生的。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AgarwalG, GargV, KudapaH, et al., 2016. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnol J, 14(7):1563-1577. ![]() [2]AxtellMJ, MeyersBC, 2018. Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell, 30(2):272-284. ![]() [3]AxtellMJ, SnyderJA, BartelDP, 2007. Common functions for diverse small RNAs of land plants. Plant Cell, 19(6):1750-1769. ![]() [4]BarrettT, TroupDB, WilhiteSE, et al., 2011. NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res, 39(S1):D1005-D1010. ![]() [5]BartelDP, 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297. ![]() [6]BennetzenJL, SchmutzJ, WangH, et al., 2012. Reference genome sequence of the model plant setaria. Nat Biotechnol, 30(6):555-561. ![]() [7]BirkenbihlRP, JachG, SaedlerH, et al., 2005. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J Mol Biol, 352(3):585-596. ![]() [8]BonnetE, HeY, BilliauK, et al., 2010. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics, 26(12):1566-1568. ![]() [9]CardonG, HöhmannS, KleinJ, et al., 1999. Molecular characterisation of the Arabidopsis SBP-box genes. Gene, 237(1):91-104. ![]() [10]ChangJZ, YanFX, QiaoLY, et al., 2016. Genome-wide identification and expression analysis of SBP-box gene family in Sorghum bicolor L. Hereditas (Beijing), 38(6):569-580 (in Chinese). ![]() [11]CuperusJT, FahlgrenN, CarringtonJC, 2011. Evolution and functional diversification of MIRNA genes. Plant Cell, 23(2):431-442. ![]() [12]DaiXB, ZhaoPX, 2011. PsRNATarget: a plant small RNA target analysis server. Nucleic Acids Res, 39(S2):W155-W159. ![]() [13]EdgarRC, 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 32(5):1792-1797. ![]() [14]FengSH, JacobsenSE, ReikW, 2010. Epigenetic reprogramming in plant and animal development. Science, 330(6004):622-627. ![]() [15]FornaraF, CouplandG, 2009. Plant phase transitions make a SPLash. Cell, 138(4):625-627. ![]() [16]Franco-ZorrillaJM, ValliA, TodescoM, et al., 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 39(8):1033-1037. ![]() [17]GautBS, le Thierry D'EnnequinM, PeekAS, et al., 2000. Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci USA, 97(13):7008-7015. ![]() [18]GielenH, RemansT, VangronsveldJ, et al., 2016. Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7. BMC Plant Biol, 16:145. ![]() [19]GouJY, FelippesFF, LiuCJ, et al., 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 23(4):1512-1522. ![]() [20]GuoAY, HeK, LiuD, et al., 2005. DATF: a database of Arabidopsis transcription factors. Bioinformatics, 21(10):2568-2569. ![]() [21]GuoAY, ZhuQH, GuXC, et al., 2008. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene, 418(1-2):1-8. ![]() [22]HuijserP, SchmidM, 2011. The control of developmental phase transitions in plants. Development, 138(19):4117-4129. ![]() [23]International Rice Genome Sequencing Project, SasakiT, 2005. The map-based sequence of the rice genome. Nature, 436(7052):793-800. ![]() [24]JeongDH, ParkS, ZhaiJX, et al., 2011. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell, 23(12):4185-4207. ![]() [25]JiaoYP, SongWB, ZhangM, et al., 2011. Identification of novel maize miRNAs by measuring the precision of precursor processing. BMC Plant Biol, 11:141. ![]() [26]JiaoYQ, WangYH, XueDW, et al., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 42(6):541-544. ![]() [27]JinJH, WangM, ZhangHX, et al., 2018. Genome-wide identification of the AP2/ERF transcription factor family in pepper (Capsicum annuum L.). Genome, 61(9):663-674. ![]() [28]KimuraM, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 16(2):111-120. ![]() [29]KozomaraA, Griffiths-JonesS, 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 39(S1):D152-D157. ![]() [30]KropatJ, TotteyS, BirkenbihlRP, et al., 2005. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci USA, 102(51):18730-18735. ![]() [31]KumarS, StecherG, LiM, et al., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 35(6):1547-1549. ![]() [32]LalS, PacisLB, SmithHMS, 2011. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis. Mol Plant, 4(6):1123-1132. ![]() [33]LangmeadB, TrapnellC, PopM, et al., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3):R25. ![]() [34]LarkinMA, BlackshieldsG, BrownNP, et al., 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21):2947-2948. ![]() [35]LawJA, JacobsenSE, 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 11(3):204-220. ![]() [36]LeiKJ, LiuH, 2016. Research advances in plant regulatory hub miR156 and targeted SPL family. Chem Life, 36(1):13-20 (in Chinese). ![]() [37]LiuMM, ShiZY, ZhangXH, et al., 2019. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat Plants, 5(4):389-400. ![]() [38]LlaveC, XieZX, KasschauKD, et al., 2002. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589):2053-2056. ![]() [39]ManningK, TörM, PooleM, et al., 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet, 38(8):948-952. ![]() [40]MartinRC, LiuPP, GolovizninaNA, et al., 2010. microRNA, seeds, and darwin?: diverse function of miRNA in seed biology and plant responses to stress. J Exp Bot, 61(9):2229-2234. ![]() [41]MeyersBC, AxtellMJ, BartelB, et al., 2008. Criteria for annotation of plant microRNAs. Plant Cell, 20(12):3186-3190. ![]() [42]MiaoCB, WangZ, ZhangL, et al., 2019. The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nat Commun, 10:3822. ![]() [43]MiuraK, IkedaM, MatsubaraA, et al., 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 42(6):545-549. ![]() [44]MoreaEGO, da SilvaEM, GFFESilva, et al., 2016. Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biol, 16:40. ![]() [45]Moreno-RisuenoMA, MartínezM, Vicente-CarbajosaJ, et al., 2007. The family of DOF transcription factors: from green unicellular algae to vascular plants. Mol Genet Genomics, 277(4):379-390. ![]() [46]NozawaM, MiuraS, NeiM, 2012. Origins and evolution of microRNA genes in plant species. Genome Biol Evol, 4(3):230-239. ![]() [47]PalatnikJF, AllenE, WuXL, et al., 2003. Control of leaf morphogenesis by microRNAs. Nature, 425(6955):257-263. ![]() [48]PatersonAH, BowersJE, BruggmannR, et al., 2009. The Sorghum bicolor genome and the diversification of grasses. Nature, 457(7229):551-556. ![]() [49]PengH, HeXJ, GaoJ, et al., 2016. Genome-wide identification and function analysis of SBP gene family in maize. Acta Agron Sin, 42(2):201-211 (in Chinese). ![]() [50]RamamurthyRK, XiangQY, HsiehEJ, et al., 2018. New aspects of iron-copper crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant spl7 in Arabidopsis thaliana. Metallomics, 10(12):1824-1840. ![]() [51]ReinhartBJ, WeinsteinEG, RhoadesMW, et al., 2002. MicroRNAs in plants. Genes Dev, 16(13):1616-1626. ![]() [52]RieseM, HöhmannS, SaedlerH, et al., 2007. Comparative analysis of the SBP-box gene families in P. patens and seed plants. Gene, 401(1-2):28-37. ![]() [53]SaeedAI, BhagabatiNK, BraistedJC, et al., 2006. TM4 microarray software suite. Methods Enzymol, 411:134-193. ![]() [54]SchnablePS, WareD, FultonRS, et al., 2009. The B73 maize genome: complexity, diversity, and dynamics. Science, 326(5956):1112-1115. ![]() [55]SchreiberAW, ShiBJ, HuangCY, et al., 2011. Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics, 12:129. ![]() [56]ShigyoM, HasebeM, ItoM, 2006. Molecular evolution of the AP2 subfamily. Gene, 366(2):256-265. ![]() [57]SollomeJ, MartinE, SethupathyP, et al., 2016. Environmental contaminants and microRNA regulation: transcription factors as regulators of toxicant-altered microRNA expression. Toxicol Appl Pharmacol, 312:61-66. ![]() [58]SongJ, CaoXN, WangHL, et al., 2020. Genome wide identification and expression analysis of the SBP gene family in foxtail millet. J Nucl Agric Sci, 34(7):1409-1420 (in Chinese). ![]() [59]SunkarR, ZhouXF, ZhengY, et al., 2008. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 8:25. ![]() [60]TangGL, 2010. Plant microRNAs: an insight into their gene structures and evolution. Semin Cell Dev Biol, 21(8):782-789. ![]() [61]TeixeiraFK, ColotV, 2010. Repeat elements and the Arabidopsis DNA methylation landscape. Heredity (Edinb), 105(1):14-23. ![]() [62]The International Brachypodium Initiative, 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463(7282):763-768. ![]() [63]VoinnetO, 2009. Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4):669-687. ![]() [64]WangJ, ZhouL, ShiH, et al., 2018. A single transcription factor promotes both yield and immunity in rice. Science, 361(6406):1026-1028. ![]() [65]WillmannMR, PoethigRS, 2007. Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol, 10(5):503-511. ![]() [66]WuL, ZhangQQ, ZhouHY, et al., 2009. Rice microRNA effector complexes and targets. Plant Cell, 21(11):3421-3435. ![]() [67]XieKB, WuCQ, XiongLZ, 2006. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol, 142(1):280-293. ![]() [68]XieYR, LiuY, WangH, et al., 2017. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun, 8:348. ![]() [69]XuL, YuanK, YuanM, et al., 2020. Regulation of rice tillering by RNA-directed DNA methylation at miniature inverted-repeat transposable elements. Mol Plant, 13(6):851-863. ![]() [70]YanJP, ChiaJC, ShengHJ, et al., 2017. Arabidopsis pollen fertility requires the transcription factors CITF1 and SPL7 that regulate copper delivery to anthers and jasmonic acid synthesis. Plant Cell, 29(12):3012-3029. ![]() [71]YangRX, LiPC, MeiHL, et al., 2019. Fine-tuning of miR528 accumulation modulates flowering time in rice. Mol Plant, 12(8):1103-1113. ![]() [72]YaoSZ, YangZR, YangRX, et al., 2019. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice. Mol Plant, 12(8):1114-1122. ![]() [73]YuN, CaiWJ, WangSC, et al., 2010. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell, 22(7):2322-2335. ![]() [74]YueEK, LiC, LiY, et al., 2017. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa). Plant Mol Biol, 94(4-5):469-480. ![]() [75]ZemachA, KimMY, SilvaP, et al., 2010. Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA, 107(43):18729-18734. ![]() [76]ZhangBH, PanXP, CobbGP, et al., 2006. Plant microRNA: a small regulatory molecule with big impact. Dev Biol, 289(1):3-16. ![]() [77]ZhangGY, LiuX, QuanZW, et al., 2012. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 30(6):549-554. ![]() [78]ZhangY, SchwarzS, SaedlerH, et al., 2007. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol, 63(3):429-439. ![]() [79]ZilbermanD, GehringM, TranRK, et al., 2007. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet, 39(1):61-69. ![]() [80]ZukerM, 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 31(13):3406-3415. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>