CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-04-19
Cited: 0
Clicked: 2968
Citations: Bibtex RefMan EndNote GB/T7714
Kaige DU, Fei LU, Chengzuo XIE, Haojie DING, Yu SHEN, Yafan GAO, Shaohong LU, Xunhui ZHUO. Toxoplasma gondii infection induces cell apoptosis via multiple pathways revealed by transcriptome analysis[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2100877 @article{title="Toxoplasma gondii infection induces cell apoptosis via multiple pathways revealed by transcriptome analysis", %0 Journal Article TY - JOUR
转录组分析揭示弓形虫感染可通过多途径诱导细胞发生凋亡创新点:通过转录组研究发现弓形虫感染促进了细胞凋亡,并发现了包括DDIT3、GADD45A、CASP3及HtrA2在内的多个关键上调基因。 方法:首先通过流式细胞仪对感染及未感染弓形虫的细胞进行凋亡检测,提取RNA后进行转录组测序,通过转录组基因上调、下调分析,GO和KEGG通路、关键基因富集、基因网络关系图、RT-PCR验证等手段进行分析。 结论:流式细胞仪检测发现弓形虫感染后能显著诱导细胞发生凋亡,进一步的转录组分析发现,与对照组相比,感染组有1579个基因表达有显著变化,其中有918个基因上调,661个基因下调;在富集的54条通路中,凋亡通路有16个关键基因上调,11个基因下调,其中caspase-3是我们发现的关键网络基因。细胞凋亡与细胞周期密切、与免疫及多种疾病有关,进一步深入研究和探索弓形虫与宿主细胞之间的凋亡机制可为寻找理想药物靶点提供理论基础。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AngeloniMB, GuirelliPM, FrancoPS, et al., 2013. Differential apoptosis in BeWo cells after infection with highly (RH) or moderately (ME49) virulent strains of Toxoplasma gondii is related to the cytokine profile secreted, the death receptor fas expression and phosphorylated ERK1/2 expression. Placenta, 34(11):973-982. ![]() [2]AriyasuD, YoshidaH, HasegawaY, 2017. Endoplasmic reticulum (ER) stress and endocrine disorders. Int J Mol Sci, 18(2):382. ![]() [3]BaderGD, HogueCWV, 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4:2. ![]() [4]ChinCH, ChenSH, WuHH, et al., 2014. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol, 8(S4):S11. ![]() [5]CongW, DottoriniT, KhanF, et al., 2018. Acute Toxoplasma gondii infection in cats induced tissue-specific transcriptional response dominated by immune signatures. Front Immunol, 9:2403. ![]() [6]CuiJM, ShenB, 2020. Transcriptomic analyses reveal distinct response of porcine macrophages to Toxoplasma gondii infection. Parasitol Res, 119(6):1819-1828. ![]() [7]DelavalléeL, MathiahN, CabonL, et al., 2020. Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus. Mol Metab, 40:101027. ![]() [8]EnariM, SakahiraH, YokoyamaH, et al., 1998. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391(6662):43-50. ![]() [9]EstaquierJ, ValletteF, VayssiereJL, et al., 2012. The mitochondrial pathways of apoptosis. In: Scatena R, Bottoni P, Giardina B (Eds.), Advances in Mitochondrial Medicine. Springer, Dordrecht, p.157-183. ![]() [10]FoxBA, BzikDJ, 2015. Nonreplicating, cyst-defective type II Toxoplasma gondii vaccine strains stimulate protective immunity against acute and chronic infection. Infect Immun, 83(5):2148-2155. ![]() [11]GaoM, GuoN, HuangCS, et al., 2009. Diverse roles of GADD45α in stress signaling. Curr Protein Pept Sci, 10(4):388-394. ![]() [12]HillRD, GouffonJS, SaxtonAM, et al., 2012. Differential gene expression in mice infected with distinct Toxoplasma strains. Infect Immun, 80(3):968-974. ![]() [13]HuYY, BiY, YaoDH, et al., 2019. Omi/HtrA2 protease associated cell apoptosis participates in blood-brain barrier dysfunction. Front Mol Neurosci, 12:48. ![]() [14]IharaF, FereigRM, HimoriY, et al., 2020. Toxoplasma gondii dense granule proteins 7, 14, and 15 are involved in modification and control of the immune response mediated via Nf-κB pathway. Front Immunol, 11:1709. ![]() [15]KimCM, ParkHH, 2020. Comparison of target recognition by TRAF1 and TRAF2. Int J Mol Sci, 21(8):2895. ![]() [16]LimaTS, LodoenMB, 2019. Mechanisms of human innate immune evasion by Toxoplasma gondii. Front Cell Infect Microbiol, 9:103. ![]() [17]LinYC, ShenZR, SongXH, et al., 2018. Comparative transcriptomic analysis reveals adriamycin-induced apoptosis via p53 signaling pathway in retinal pigment epithelial cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(12):895-909. ![]() [18]LivakKJ, SchmittgenTD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the2-ΔΔCT method. Methods, 25(4):402-408. ![]() [19]LossiL, CastagnaC, MerighiA, 2018. Caspase-3 mediated cell death in the normal development of the mammalian cerebellum. Int J Mol Sci, 19(12):3999. ![]() [20]LuG, ZhouJ, ZhaoYH, et al., 2019. Transcriptome sequencing investigated the tumor-related factors changes after T. Gondii infection. Front Microbiol, 10:181. ![]() [21]MammariN, HalabiMA, YaacoubS, et al., 2019. Toxoplasma gondii modulates the host cell responses: an overview of apoptosis pathways. Biomed Res Int, 2019:6152489. ![]() [22]ManglaA, GuerraMT, NathansonMH, 2020. Type 3 inositol 1,4,5-trisphosphate receptor: a calcium channel for all seasons. Cell Calcium, 85:102132. ![]() [23]ParlogA, SchlüterD, DunayIR, 2015. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol, 37(3):159-170. ![]() [24]QuanJH, ChaGH, ZhouW, et al., 2013. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis. Exp Parasitol, 133(4):462-471. ![]() [25]RajedadramA, PinKY, LingSK, et al., 2021. Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(2):112-122. ![]() [26]RanjanA, IwakumaT, 2016. Non-canonical cell death induced by p53. Int J Mol Sci, 17(12):2068. ![]() [27]RosowskiEE, SaeijJPJ, 2012. Toxoplasma gondii clonal strains all inhibit STAT1 transcriptional activity but polymorphic effectors differentially modulate IFNγ induced gene expression and STAT1 phosphorylation. PLoS ONE, 7(12):e51448. ![]() [28]RosowskiEE, LuD, JulienL, et al., 2011. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J Exp Med, 208(1):195-212. ![]() [29]SajjadN, MirMM, KhanJ, et al., 2019. Recognition of TRAIP with TRAFs: current understanding and associated diseases. Int J Biochem Cell Biol, 115:105589. ![]() [30]SzklarczykD, FranceschiniA, WyderS, et al., 2015. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res, 43(D1):D447-D452. ![]() [31]TantralL, MalathiK, KohyamaS, et al., 2004. Intracellular calcium release is required for caspase-3 and -9 activation. Cell Biochem Funct, 22(1):35-40. ![]() [32]VenugopalK, MarionS, 2018. Secretory organelle trafficking in Toxoplasma gondii: a long story for a short travel. Int J Med Microbiol, 308(7):751-760. ![]() [33]WanLJ, GongLL, WangW, et al., 2015. T. Gondii rhoptry protein ROP18 induces apoptosis of neural cells via endoplasmic reticulum stress pathway. Parasit Vectors, 8:554. ![]() [34]WangT, ZhouJ, GanXF, et al., 2014. Toxoplasma gondii induce apoptosis of neural stem cells via endoplasmic reticulum stress pathway. Parasitology, 141(7):988-995. ![]() [35]WeiW, ZhangFF, ChenH, et al., 2018. Toxoplasma gondii dense granule protein 15 induces apoptosis in choriocarcinoma JEG-3 cells through endoplasmic reticulum stress. Parasit Vectors, 11(1):251. ![]() [36]YangZS, HouYH, HaoTF, et al., 2017. A human proteome array approach to identifying key host proteins targeted by Toxoplasma kinase ROP18. Mol Cell Proteomics, 16(3):469-484. ![]() [37]YuanX, GajanA, ChuQ, et al., 2018. Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer Metastasis Rev, 37(4):733-748. ![]() [38]ZhouCX, ElsheikhaHM, ZhouDH, et al., 2016. Dual identification and analysis of differentially expressed transcripts of porcine PK-15 cells and Toxoplasma gondii during in vitro infection. Front Microbiol, 7:721. ![]() [39]ZhouLJ, ChenM, PuthiyakunnonS, et al., 2019. Toxoplasma gondii ROP18 inhibits human glioblastoma cell apoptosis through a mitochondrial pathway by targeting host cell P2X1. Parasit Vectors, 12:284. ![]() [40]ZhuoXH, SunHC, HuangB, et al., 2017. Evaluation of potential anti-toxoplasmosis efficiency of combined traditional herbs in a mouse model. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(6):453-461. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>