Full Text:  <1929>

Summary:  <1488>

CLC number: O439

On-line Access: 2019-06-10

Received: 2018-06-01

Revision Accepted: 2019-01-17

Crosschecked: 2019-05-13

Cited: 0

Clicked: 6595

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yi-zheng Guo

http://orcid.org/0000-0002-9153-3050

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Rapid thermal sensors with high resolution based on an adaptive dual-comb system


Author(s):  Yi-zheng Guo, Ming Yan, Qiang Hao, Kang-wen Yang, Xu-ling Shen, He-ping Zeng

Affiliation(s):  Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; more

Corresponding email(s):  yizhengguo_usst@126.com, xlshen@lps.ecnu.edu.cn, hpzeng@phy.ecnu.edu.cn

Key Words:  Interferometers, Fiber sensors, Laser spectroscopy


Share this article to: More <<< Previous Paper|Next Paper >>>

Yi-zheng Guo, Ming Yan, Qiang Hao, Kang-wen Yang, Xu-ling Shen, He-ping Zeng. Rapid thermal sensors with high resolution based on an adaptive dual-comb system[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1800347

@article{title="Rapid thermal sensors with high resolution based on an adaptive dual-comb system",
author="Yi-zheng Guo, Ming Yan, Qiang Hao, Kang-wen Yang, Xu-ling Shen, He-ping Zeng",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.1800347"
}

%0 Journal Article
%T Rapid thermal sensors with high resolution based on an adaptive dual-comb system
%A Yi-zheng Guo
%A Ming Yan
%A Qiang Hao
%A Kang-wen Yang
%A Xu-ling Shen
%A He-ping Zeng
%J Frontiers of Information Technology & Electronic Engineering
%P 674-684
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.1800347"

TY - JOUR
T1 - Rapid thermal sensors with high resolution based on an adaptive dual-comb system
A1 - Yi-zheng Guo
A1 - Ming Yan
A1 - Qiang Hao
A1 - Kang-wen Yang
A1 - Xu-ling Shen
A1 - He-ping Zeng
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 674
EP - 684
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.1800347"


Abstract: 
We report a high-resolution rapid thermal sensing based on adaptive dual comb spectroscopy interrogated with a phase-shifted fiber Bragg grating (PFBG). In comparison with traditional dual-comb systems, adaptive dual-comb spectroscopy is extremely simplified by removing the requirement of strict phase-locking feedback loops from the dual-comb configuration. Instead, two free-running fiber lasers are adopted as the light sources. Because of good compensation of fast instabilities with adaptive techniques, the optical response of the PFBG is precisely characterized through a fast Fourier transform of the interferograms in the time domain. Single-shot acquisition can be accomplished rapidly within tens of milliseconds at a spectral resolution of 0.1 pm, corresponding to a thermal measurement resolution of 0.01 °C. The optical spectral bandwidth of the measurement also exceeds 14 nm, which indicates a large dynamic temperature range. It shows great potential for thermal sensing in practical outdoor applications with a loose self-control scheme in the adaptive dual-comb system.

基于自适应双光梳系统的高分辨率快速热传感器

摘要:提出一种基于自适应双光梳光谱测量系统的相移光纤布拉格光栅(PFBG)高分辨率快速热传感技术。与传统双光梳系统相比,自适应双光梳系统以两个自由运行的光纤激光器为光源,消除了严格的锁相反馈环节,极大降低了系统复杂度。利用自适应技术对光梳梳齿的快速不稳定性进行较好补偿,通过对干涉图进行时域快速傅里叶变换,精确表征了PFBG的光学响应。单次采集可在几十毫秒内完成,光谱分辨率为0.1 pm,对应的热测量分辨率为0.01 ℃。测量的光谱带宽超过14 nm,说明动态测量范围较大。自适应双光梳系统采用宽松的自控制方案,在室外实际应用中显示出巨大潜力。

关键词组:干涉仪;光纤传感器;激光光谱学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bernhardt B, Ozawa A, Jacquet P, et al., 2010. Cavity-enhanced dual-comb spectroscopy. Nat Photon, 4(1): 55-57.

[2]Cassinerio M, Gambetta A, Coluccelli N, et al., 2014. Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers. Appl Phys Lett, 104(23):231102.

[3]Chow JH, McClelland DE, Gray MB, et al., 2005. Demonstration of a passive subpicostrain fiber strain sensor. Opt Lett, 30(15):1923-1925.

[4]Coddington I, Swann WC, Newbury NR, 2008. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys Rev Lett, 100(1):013902.

[5]Coddington I, Swann WC, Newbury NR, 2009. Coherent linear optical sampling at 15 bits of resolution. Opt Lett, 34(14):2153-2155.

[6]Coddington I, Swann WC, Newbury NR, 2010. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys Rev A, 82(4):043817.

[7]Coddington I, Newbury N, Swann W, 2016. Dual-comb spectroscopy. Optica, 3(4):414-426.

[8]Cusano A, Cutolo A, Nasser J, et al., 2004. Dynamic strain measurements by fibre Bragg grating sensor. Sens Act A, 110(1-3):276-281.

[9]Deng YJ, Lu F, Knox WH, 2005. Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications. Opt Expr, 13(12): 4589-4593.

[10]Deschênes JD, Giaccari P, Genest J, 2010. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry. Opt Expr, 18(22):23358-23370.

[11]Diddams SA, 2010. The evolving optical frequency comb. J Opt Soc Am B, 27(11):B51-B62.

[12]Droste S, Ycas G, Washburn BR, et al., 2016. Optical frequency comb generation based on Erbium fiber lasers. Nanophoton, 5(2):196-213.

[13]Du WC, Tao XM, Tam HY, 1999. Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE Photon Technol Lett, 11(1):105-107.

[14]Gagliardi G, Salza M, Avino S, et al., 2010. Probing the ultimate limit of fiber-optic strain sensing. Science, 330(6007):1081-1084.

[15]Giaccari P, Deschênes JD, Saucier P, et al., 2008. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt Expr, 16(6):4347-4365.

[16]Hao Q, Wang YF, Luo P, et al., 2017. Self-starting dropout-free harmonic mode-locked soliton fiber laser with a low timing jitter. Opt Lett, 42(12):2330-2333.

[17]He ZY, Liu QW, Tokunaga T, 2012. Realization of nano-strain-resolution fiber optic static strain sensor for geo-science applications. Proc Conf on Lasers and Electro-Optics. p.1-2

[18]Hugi A, Villares G, Blaser S, et al., 2012. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 492(7428):229-233.

[19]Ideguchi T, Poisson A, Guelachvili G, et al., 2012. Adaptive dual-comb spectroscopy in the green region. Opt Lett, 37(23):4847-4849.

[20]Ideguchi T, Poisson A, Guelachvili G, et al., 2014. Adaptive real-time dual-comb spectroscopy. Nat Commun, 5:3375.

[21]Ideguchi T, Nakamura T, Kobayashi Y, et al., 2016. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica, 3(7):748-753.

[22]Jin YW, Cristescu SM, Harren FJM, et al., 2015. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy. Appl Phys B, 119(1):65-74.

[23]Keilmann F, Gohle C, Holzwarth R, 2004. Time-domain mid-infrared frequency-comb spectrometer. Opt Lett, 29(13): 1542-1544.

[24]Kersey AD, Berkoff TA, Morey WW, 1993. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Opt Lett, 18(16):1370-1372.

[25]Kourogi M, Nakagawa K, Ohtsu M, 1993. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J Quant Electron, 29(10):2693-2701.

[26]Kuse N, Ozawa A, Kobayashi Y, 2012. Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers. Appl Phys Expr, 5(11):112402.

[27]Kuse N, Ozawa A, Kobayashi Y, 2013. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy. Opt Expr, 21(9):11141-11149.

[28]Lam TTY, Chow JH, Shaddock DA, et al., 2010a. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing. Appl Opt, 49(21): 4029-4033.

[29]Lam TTY, Gagliardi G, Salza M, et al., 2010b. Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings. Meas Sci Technol, 21(9): 094010.

[30]Li JM, Ma YC, Yan SB, et al., 2013. High precision and wide scale fiber Bragg grating sensor interrogation system based on tunable filter. Chin J Lasers, 40(9):0905002 (in Chinese).

[31]Majumder M, Gangopadhyay TK, Chakraborty AK, et al., 2008. Fibre Bragg gratings in structural health monitoring—present status and applications. Sens Actuat A, 147(1):150-164.

[32]Measures RM, 2001. Structural Monitoring with Fiber Optic Technology. Academic Press, San Diego, USA.

[33]Millot G, Pitois S, Yan M, et al., 2016. Frequency-agile dual-comb spectroscopy. Nat Photon, 10(1):27-30.

[34]Newbury NR, Swann WC, 2007. Low-noise fiber-laser frequency combs. J Opt Soc Am B, 24(8):1756-1770.

[35]Newbury NR, Coddington I, Swann W, 2010. Sensitivity of coherent dual-comb spectroscopy. Opt Expr, 18(8):7929-7945.

[36]Rieker GB, Giorgetta FR, Swann WC, et al., 2014. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 5(1):290-298.

[37]Roy J, Deschênes JD, Potvin S, et al., 2012. Continuous real-time correction and averaging for frequency comb interferometry. Opt Expr, 20(20):21932-21939.

[38]Schiller S, 2002. Spectrometry with frequency combs. Opt Lett, 27(9):766-768.

[39]Schliesser A, Brehm M, Keilmann F, et al., 2005. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt Expr, 13(22):9029-9038.

[40]Shen XL, Yan M, Hao Q, et al., 2018. Adaptive dual-comb spectroscopy with 1200-h continuous operation stability. IEEE Photon J, 10(5):1503309.

[41]Taurand G, Giaccari P, Deschênes JD, et al., 2010. Time-domain optical reflectometry measurements using a frequency comb interferometer. Appl Opt, 49(23):4413-4419.

[42]Udem T, Holzwarth R, Hänsch TW, 2002. Optical frequency metrology. Nature, 416(6877):233-237.

[43]Udem T, Holzwarth R, Hänsch T, 2009. Femtosecond optical frequency combs. Eur Phy J Spec Top, 172(1):69-79.

[44]Washburn BR, Diddams SA, Newbury NR, et al., 2004. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. Opt Lett, 29(3):250-252.

[45]Wu Q, Semenova Y, Sun A, et al., 2010. High resolution temperature insensitive interrogation technique for FBG sensors. Opt Laser Technol, 42(4):653-656.

[46]Yan M, Luo PL, Iwakuni K, et al., 2017. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci Appl, 6:e17076.

[47]Yasui T, Kabetani Y, Saneyoshi E, et al., 2006. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl Phys Lett, 88(24):241104.

[48]Yasui T, Ichikawa R, Hsieh YD, et al., 2015. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers. Sci Rep, 5:10786.

[49]Zhang ZW, Gardiner T, Reid DT, 2013. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Opt Lett, 38(16):3148-3150.

[50]Zhao X, Hu GQ, Zhao BF, et al., 2016. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. Opt Expr, 24(19):21833-21845.

[51]Zhu F, Mohamed T, Strohaber J, et al., 2013. Real-time dual frequency comb spectroscopy in the near infrared. Appl Phys Lett, 102(12):121116.

[52]Zolot AM, Giorgetta FR, Baumann E, et al., 2012. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt Lett, 37(4):638-640.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE