Full Text:  <2964>

Summary:  <1573>

CLC number: O436

On-line Access: 2019-06-10

Received: 2019-02-23

Revision Accepted: 2019-05-09

Crosschecked: 2019-05-27

Cited: 0

Clicked: 6989

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Nan Li

https://orcid.org/0000-0003-3585-2273

Hui-zhu Hu

https://orcid.org/0000-0003-1690-9414

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Review of optical tweezers in vacuum


Author(s):  Nan Li, Xun-min Zhu, Wen-qiang Li, Zhen-hai Fu, Meng-zhu Hu, Hui-zhu Hu

Affiliation(s):  State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):  nanli@zju.edu.cn, huhuizhu2000@zju.edu.cn

Key Words:  Optical tweezers, Optical trapping in vacuum, Optical cooling


Share this article to: More <<< Previous Paper|Next Paper >>>

Nan Li, Xun-min Zhu, Wen-qiang Li, Zhen-hai Fu, Meng-zhu Hu, Hui-zhu Hu. Review of optical tweezers in vacuum[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1900095

@article{title="Review of optical tweezers in vacuum",
author="Nan Li, Xun-min Zhu, Wen-qiang Li, Zhen-hai Fu, Meng-zhu Hu, Hui-zhu Hu",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.1900095"
}

%0 Journal Article
%T Review of optical tweezers in vacuum
%A Nan Li
%A Xun-min Zhu
%A Wen-qiang Li
%A Zhen-hai Fu
%A Meng-zhu Hu
%A Hui-zhu Hu
%J Frontiers of Information Technology & Electronic Engineering
%P 655-673
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.1900095"

TY - JOUR
T1 - Review of optical tweezers in vacuum
A1 - Nan Li
A1 - Xun-min Zhu
A1 - Wen-qiang Li
A1 - Zhen-hai Fu
A1 - Meng-zhu Hu
A1 - Hui-zhu Hu
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 655
EP - 673
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.1900095"


Abstract: 
As a versatile tool for trapping and manipulating neutral particles, optical tweezers have been studied in a broad range of fields such as molecular biology, nanotechnology, and experimentally physics since Arthur Ashkin pioneered the field in the early 1970s. By levitating the “sensor” with a laser beam instead of adhering it to solid components, excellent environmental decoupling is achieved. Furthermore, unlike levitating particles in liquid or air, optical tweezers operating in vacuum are isolated from environmental thermal noise, thus eliminating the primary source of dissipation present for most inertial sensors. This attracted great attention in both fundamental and applied physics. In this paper we review the history and the basic concepts of optical tweezers in vacuum and provide an overall understanding of the field.

真空光镊技术综述

摘要:光镊技术自上世纪七十年代由阿瑟·阿什金开创以来,作为捕获和操纵中性粒子的通用工具,已在分子生物学、纳米技术和实验物理学等领域得到广泛研究和应用。基于光镊技术的传感与精密测量系统,通过激光束悬浮传感单元,而非与装置固连,相比传统固态传感器,无机械耗散。此外,与液体或空气介质中的光镊系统不同,在真空中运作的光镊系统可实现传感单元与环境的完全隔离。基于上述优势,基础物理学和应用物理学领域科学家对真空光镊开展了大量研究。本文回顾了真空光镊技术的基本概念和发展历史,帮助读者全面了解该领域。

关键词组:光镊;真空光阱;激光冷却

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahn J, Xu ZJ, Bang J, et al., 2018. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys Rev Lett, 121:033603.

[2]Appel J, Windpassinger PJ, Oblak D, et al., 2009. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc Nat Acad Sci USA, 106(27):10960-10965.

[3]Arita Y, Mazilu M, Dholakia K, et al., 2013. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat Commun, 4:2374.

[4]Arita Y, Chen MZ, Wright EM, et al., 2017. Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential. J Opt Soc Am B, 34(6):C14-C19.

[5]Ashkin A, 1970. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 24(4):156-159.

[6]Ashkin A, 1992. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J, 61(2):569-582.

[7]Ashkin A, 2000. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J Sel Top Quant Electron, 6(6):841-856.

[8]Ashkin A, Dziedzic JM, 1971. Optical levitation by radiation pressure. Appl Phys Lett, 19(8):283-285.

[9]Ashkin A, Dziedzic JM, 1976. Optical levitation in high vacuum. Appl Phys Lett, 28(6):333-335.

[10]Ashkin A, Dziedzic JM, 1977. Feedback stabilization of optically levitated particles. Appl Phys Lett, 30(4):202-204.

[11]Ashkin A, Dziedzic JM, Bjorkholm JE, et al., 1986. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, 11(5):288-290.

[12]Ashkin A, Schütze K, Dziedzic JM, et al., 1990. Force generation of organelle transport measured in vivo by an infrared laser trap. Nature, 348(6299):346-348.

[13]Barker PF, 2010. Doppler cooling a microsphere. Phys Rev Lett, 105:073002.

[14]Block SM, Goldstein LSB, Schnapp BJ, 1990. Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348(6299):348-352.

[15]Bohren CF, Huffman DR, 1983. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York.

[16]Braginskiĭ VB, Manukin AB, 1967. Ponderomotive effects of electromagnetic radiation. Sov Phys J Exper Theor Phys, 25(4):653-655.

[17]Braginskiĭ VB, Manukin AB, Tikhonov MY, 1970. Investigation of dissipative ponderomotive effects of electromagnetic radiation. Sov J Exp Theor Phys, 31:829.

[18]Bui AAM, Stilgoe AB, Lenton ICD, et al., 2017. Theory and practice of simulation of optical tweezers. J Quant Spectrosc Rad Transf, 195:66-75.

[19]Bustamante C, Erie DA, Keller D, 1994. Biochemical and structural applications of scanning force microscopy. Curr Opin Struct Biol, 4(5):750-760.

[20]Butts DLG, 2008. Development of a Light Force Accelerometer. MS Thesis, Massachusetts Institute of Technology, Massachusetts, USA.

[21]Callegari A, Mijalkov M, Gököz AB, et al., 2015. Computational toolbox for optical tweezers in geometrical optics. J Opt Soc Am B, 32:B11-B19.

[22]Català F, Marsà F, Montes-Usategui M, et al., 2017. Influence of experimental parameters on the laser heating of an optical trap. Sci Rep, 7(1):16052.

[23]Chan J, Alegre TP, Safavi-Naeini AH, et al., 2011. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367):89-92.

[24]Chang DE, Regal CA, Papp SB, et al., 2010. Cavity opto- mechanics using an optically levitated nanosphere. Proc Nat Acad Sci USA, 107(3):1005-1010.

[25]Chang YR, Hsu L, Chi S, 2006. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells. Appl Opt, 45(16):3885- 3892.

[26]Chen MZ, Mazilu M, Arita Y, et al., 2013. Dynamics of microparticles trapped in a perfect vortex beam. Opt Lett, 38(22):4919-4922.

[27]Chen MZ, Mazilu M, Arita Y, et al., 2014. Optical trapping with a perfect vortex beam. In: Optical Trapping and Optical Micromanipulation XI. International Society for Optics and Photonics, 9164:91640K.

[28]Chen MZ, Mazilu M, Arita Y, et al., 2015. Creating and probing of a perfect vortex in situ with an optically trapped particle. Opt Rev, 22(1):162-165.

[29]Chu S, Hollberg L, Bjorkholm JE, et al., 1985. Three- dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys Rev Lett, 55(1):48- 51.

[30]Ciminelli C, Conteduca D, Dell‚Olio F, et al., 2017. Photonic, plasmonic and hybrid nanotweezers for single nanoparticle trapping and manipulation. 19th Int Conf on Transparent Optical Networks.

[31]Clercx HJH, Schram PPJM, 1992. Brownian particles in shear flow and harmonic potentials: a study of long-time tails. Phys Rev A, 46(4):1942-1950.

[32]Cohadon PF, Heidmann A, Pinard M, 1999. Cooling of a mirror by radiation pressure. Phys Rev Lett, 83(16): 3174-3177.

[33]Cohen L, 1998. The generalization of the Wiener-Khinchin theorem. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.1577-1580.

[34]Corbitt T, Chen YB, Innerhofer E, et al., 2007. An all-optical trap for a gram-scale mirror. Phys Rev Lett, 98:150802.

[35]Davis KB, Mewes M, Andrews MR, et al., 1995. Bose- Einstein condensation in a gas of sodium atoms. Phys Rev Lett, 75(22):3969-3973.

[36]Diehl R, Hebestreit E, René R, et al., 2018. Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane. Phys Rev A, 98(1):013851.

[37]Dienerowitz M, Mazilu M, Dholakia K, et al., 2008. Optical manipulation of nanoparticles: a review. J Nanophoton, 2:21875.

[38]Fu ZH, She X, Li N, et al., 2018a. A chip of pulse-laser- assisted dual-beam fiber-optic trap. Progress in Electromagnetics Research Symp, p.86-91.

[39]Fu ZH, She X, Li N, et al., 2018b. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber- optic trap. Opt Commun, 417:103-109.

[40]Genes C, Vitali D, Tombesi P, et al., 2008. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys Rev A, 77(3):033804.

[41]Geraci AA, Smullin SJ, Weld DM, et al., 2008. Improved constraints on non-Newtonian forces at 10 microns. Phys Rev D, 78:022002.

[42]Geraci AA, Papp SB, Kitching J, 2010. Short-range force detection using optically cooled levitated microspheres. Phys Rev Lett, 105:101101.

[43]Gieseler J, 2014. Dynamics of Optically Levitated Nanoparticles in High Vacuum. PhD Thesis, Universitat Politècnica de Catalunya.

[44]Gieseler J, Deutsch B, Quidant R, et al., 2012. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys Rev Lett, 109(10):103603.

[45]Gieseler J, Novotny L, Quidant R, 2013. Thermal nonlinearities in a nanomechanical oscillator. Nat Phys, 9(12):806- 810.

[46]Gong ZY, Pan YL, Videen G, et al., 2018. Optical trapping and manipulation of single particles in air: principles, technical details, and applications. J Quant Spectrosc Rad Transf, 214:94-119.

[47]Gouesbet G, 2010. T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates. Opt Commun, 283(4):517-521.

[48]Gouesbet G, 2019. Generalized Lorenz-Mie theories and mechanical effects of laser light, on the occasion of Arthur Ashkin’s receipt on the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: a review. J Quant Spectros Rad Transf, 225:258-277.

[49]Gouesbet G, Gréhan G, 2017. Special cases of axisymmetric and Gaussian beams. In: Generalized Lorenz-Mie Theories (2nd Ed.). Springer, Cham, p.268-270.

[50]Gouesbet G, Lock JA, 2015. On the electromagnetic scattering of arbitrary shaped beams by arbitrary shaped particles: a review. J Quant Spectrosc Rad Transf, 162:31-49.

[51]Gouesbet G, Maheu B, Gréhan G, 1988. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J Opt Soc Am A, 5(9):1427-1443.

[52]Grass D, 2013. Optical Trapping and Transport of Nanoparticles with Hollow Core Photonic Crystal Fibers. MS Thesis, University of Vienna.

[53]Grier DG, 2003. A revolution in optical manipulation. Nature, 424(6950):810-816.

[54]Gröeblacher S, Gigan S, Böehm HR, et al., 2008. Radiation- pressure self-cooling of a micromirror in a cryogenic environment. Europhys Lett, 81(5):54003.

[55]Hänsch TW, Schawlow AL, 1975. Cooling of gases by laser radiation. Opt Commun, 13(1):68-69.

[56]Harada Y, Asakura T, 1996. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Comm, 124(5-6):529-541.

[57]Hebestreit E, Frimmer M, Reimann R, et al., 2018. Measuring gravity with optically levitated nanoparticles. Advanced Photonics Congress.

[58]Hoang TM, Ahn J, Bang J, et al., 2016. Electron spin control of optically levitated nanodiamonds in vacuum. Nat Commun, 7:12250.

[59]Jain V, Gieseler J, Moritz C, et al., 2016a. Direct measurement of photon recoil from a levitated nanoparticle. Phys Rev Lett, 116(24):243601.

[60]Jain V, Tebbenjohanns F, Novotny L, 2016b. Microkelvin control of an optically levitated nanoparticle. Front Opt.

[61]Juan ML, Righini M, Quidant R, 2011. Plasmon nano-optical tweezers. Nat Photon, 5(6):349-356.

[62]Kajorndejnukul V, Ding WQ, Sukhov S, et al., 2013. Linear momentum increase and negative optical forces at dielectric interface. Nat Photon, 7(10):787-790.

[63]Kapner DJ, Cook TS, Adelberger EG, et al., 2007. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys Rev Lett, 98(2):021101.

[64]Kepler J, 1619. De cometis libelli tres, typis Andreae Apergeri, sumptibus Sebastiani Mylii bibliopolae augustani. Avgvstae Vindelicorum.

[65]Kiesel N, Blaser F, Delić U, et al., 2013. Cavity cooling of an optically levitated submicron particle. Proc Nat Acad Sci USA, 110(35):14180-14185.

[66]Kirstine BS, Henrik F, 2004. Power spectrum analysis for optical tweezers. Rev Sci Instrum, 75(3):594-612.

[67]Lebedev P 1901. Untersuchungen über die druckkräfte des lichtes. Ann Phys, 6:433-458 (in German).

[68]Lett PD, Watts RN, Westbrook CI, et al., 1988. Observation of atoms laser cooled below the Doppler limit. Phys Rev Lett, 61(2):169-172.

[69]Li TC, 2013. Fundamental Tests of Physics with Optically Trapped Microspheres. Springer Science & Business Media, New York.

[70]Li TC, Kheifets S, Medellin D, et al., 2010. Measurement of the instantaneous velocity of a Brownian particle. Science, 328(5986):1673-1675.

[71]Li TC, Kheifets S, Raizen MG, 2011. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat Phys, 7(7):527-530.

[72]Loke VLY, Nieminen TA, Heckenberg NR, et al., 2001. T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry. J Quant Spectrosc Rad Transf, 110(14-16):1460-1471.

[73]Ludlow AD, Boyd MM, Ye J, et al., 2015. Optical atomic clocks. Rev Mod Phys, 87(2):637-701.

[74]Mackowski DW, 2002. Discrete dipole moment method for calculation of the T matrix for nonspherical particles. J Opt Soc Am A, 19(5):881-893.

[75]Mao H, Arias-Gonzalez JR, Smith SB, et al., 2005. Temperature control methods in a laser tweezers system. Biophys J, 89(2):1308-1316.

[76]Maragò OM, Jones PH, Gucciardi P, et al., 2013. Optical trapping and manipulation of nanostructures. Nat Nanotechnol, 8(11):807-819.

[77]Marquardt F, Chen JP, Clerk AA, et al., 2007. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys Rev Lett, 99:093902.

[78]Mazilu M, Arita Y, Vettenburg T, et al., 2016. Orbital- angular-momentum transfer to optically levitated microparticles in vacuum. Phys Rev A, 94(5):053821.

[79]Mestres P, Berthelot J, Spasenović M, et al., 2015. Cooling and manipulation of a levitated nanoparticle with an optical fiber trap. Appl Phys Lett, 107(15):151102.

[80]Miao HX, Srinivasan K, Aksyuk V, 2012. A microelectromechanically controlled cavity optomechanical sensing system. New J Phys, 14:075015.

[81]Millen J, Deesuwan T, Barker P, et al., 2014. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat Nanotechnol, 9(6):425-429.

[82]Monteiro F, Ghosh S, Fine AG, et al., 2017. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Phys Rev A, 96:063841.

[83]Moore DC, Rider AD, Gratta G, 2014. Search for millicharged particles using optically levitated microspheres. Phys Rev Lett, 113(25):251801.

[84]Moser J, Güttinger J, Eichler A, et al., 2013. Ultrasensitive force detection with a nanotube mechanical resonator. Nat Nanotechnol, 8(7):493-496.

[85]Neuman KC, Block SM, 2004. Optical trapping. Rev Sci Instrum, 75(9):2787-2809.

[86]Nichols EF, Hull GF, 1903. The pressure due to radiation. Astrophys J, 17(5):315-351.

[87]Nieminen TA, Rubinsztein-Dunlop H, Heckenberg NR, 2003a. Calculation of the T-matrix: general considerations and application of the point-matching method. J Quant Spectrosc Rad Transf, 79-80:1019-1029.

[88]Nieminen TA, Rubinsztein-Dunlop H, Heckenberg NR, 2003b. Multipole expansion of strongly focussed laser beams. J Quant Spectrosc Rad Transf, 79-80:1005-1017.

[89]Nieminen TA, Loke VLY, Stilgoe AB, et al., 2007. Optical tweezers computational toolbox. J Opt A, 9(8):S196-S203.

[90]Nieminen TA, Du Preez-Wilkinson N, Stilgoe AB, et al., 2014. Optical tweezers: theory and modelling. J Quant Spectrosc Rad Transf, 146:59-80.

[91]Ostrovsky AS, Rickenstorff-Parrao C, Víctor A, 2013. Generation of the “perfect” optical vortex using a liquid- crystal spatial light modulator. Opt Lett, 38(4):534-536.

[92]Park YS, Wang HL, 2009. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nay Phys, 5:489- 493.

[93]Peterman EJG, Gittes F, Schmidt CF, 2003. Laser-induced heating in optical traps. Biophys J, 84(2):1308-1316.

[94]Peters A, Chung KY, Chu S, 2001. High-precision gravity measurements using atom interferometry. Metrologia, 38(1):25-61.

[95]Polimeno P, Magazzù A, Iatì MA, et al., 2018. Optical tweezers and their applications. J Quant Spectrosc Rad Transf, 218:131-150.

[96]Ranjit G, Atherton DP, Stutz JH, et al., 2015. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum. Phys Rev A, 91(5):051805.

[97]Ranjit G, Cunningham M, Casey K, et al., 2016. Zeptonewton force sensing with nanospheres in an optical lattice. Phys Rev A, 93(5):053801.

[98]Reimann R, Doderer M, Hebestreit E, et al., 2018. GHz rotation of an optically trapped nanoparticle in vacuum. Phys Rev Lett, 121(3):033602.

[99]Ren KF, Gréhan G, Gouesbet G, 1996. Prediction of reverse radiation pressure by generalized Lorenz-Mie theory. Appl Opt, 35(15):2702-2710.

[100]Rider AD, Blakemore CP, Gratta GG, et al., 2018. Single- beam dielectric-microsphere trapping with optical heterodyne detection. Phys Rev A, 97:013842.

[101]Rocheleau T, Ndukum T, Macklin C, et al., 2010. Preparation and detection of a mechanical resonator near the ground state of motion. Nature, 463(7277):72-75.

[102]Romero-Isart O, Pflanzer AC, Juan ML, et al., 2011. Optically levitating dielectrics in the quantum regime: theory and protocols. Phys Rev A, 83:013803.

[103]Romero-Isart O, Clemente L, Navau C, et al., 2012. Quantum magnetomechanics with levitating superconducting microspheres. Phys Rev Lett, 109(14):147205.

[104]Rugar D, Budakian R, Mamin HJ, et al., 2004. Single spin detection by magnetic resonance force microscopy. Nature, 430(6997):329-332.

[105]Skelton SE, Sergides M, Memoli G, et al., 2012. Trapping and deformation of microbubbles in a dual-beam fibre-optic trap. J Opt, 14(7):075706.

[106]Sukhov S, Dogariu A, 2017. Non-conservative optical forces. Rep Prog Phys, 80(11):112001.

[107]Summers MD, Burnham DR, McGloin D, 2008. Trapping solid aerosols with optical tweezers: a comparison between gas and liquid phase optical traps. Opt Expr, 16(11): 7739-7747.

[108]Swartzlander GAJr, Peterson TJ, Artusio-Glimpse A, et al., 2010. Stable optical lift. Nat Photon, 5(1):48-51.

[109]Teufel JD, Donner T, Li DL, et al., 2011. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475(7356):359-363.

[110]Torki A, 2016. Mechanical Transfer of Optically Trapped Nanoparticle. MS Thesis, KTH Royal Institute of Technology.

[111]Townes CH, 1999. How the Laser Happened: Adventures of a Scientist. Oxford University Press, New York

[112]Vovrosh J, Rashid M, Hempston D, et al., 2017. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. J Opt Soc Am B, 34(7):1421-1428.

[113]Waterman PC, 1965. Matrix for mulation of electromagnetic scattering. Proc IEEE, 53(8):805-812.

[114]Waterman PC, 1971. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys Rev D, 3:825-839.

[115]White DA, 2000. Numerical modeling of optical gradient traps using the vector finite element method. J Comput Phys, 159:13-37.

[116]Wineland DJ, Dehmelt H, 1975. Proposed 1014Δν<ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator. Am Phys Soc, 20:637.

[117]Wright WH, Sonek GJ, Berns MW, 1994. Parametric study of the forces on microspheres held by optical tweezers. Appl Opt, 33(9):1735-1748.

[118]Yin ZQ, Geraci AA, Li TC, 2013. Optomechanics of levitated dielectric particles. Int J Mod Phys B, 27(26):1330018.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE