Full Text:   <2051>

Summary:  <1404>

CLC number: O415

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-12-03

Cited: 0

Clicked: 5001

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Mo Chen

http://orcid.org/0000-0003-1841-7608

Bo-cheng Bao

http://orcid.org/0000-0001-6413-3038

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.12 P.1706-1716

http://doi.org/10.1631/FITEE.1900360


Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance


Author(s):  Mo Chen, Xue Ren, Hua-gan Wu, Quan Xu, Bo-cheng Bao

Affiliation(s):  School of Information Science and Engineering, Changzhou University, Changzhou 213164, China

Corresponding email(s):   mchen@cczu.edu.cn, mervinbao@126.com

Key Words:  Initial offset boosting, Memristive system, Memductance, Line equilibrium set


Mo Chen, Xue Ren, Hua-gan Wu, Quan Xu, Bo-cheng Bao. Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(12): 1706-1716.

@article{title="Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance",
author="Mo Chen, Xue Ren, Hua-gan Wu, Quan Xu, Bo-cheng Bao",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="12",
pages="1706-1716",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900360"
}

%0 Journal Article
%T Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance
%A Mo Chen
%A Xue Ren
%A Hua-gan Wu
%A Quan Xu
%A Bo-cheng Bao
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 12
%P 1706-1716
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900360

TY - JOUR
T1 - Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance
A1 - Mo Chen
A1 - Xue Ren
A1 - Hua-gan Wu
A1 - Quan Xu
A1 - Bo-cheng Bao
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 12
SP - 1706
EP - 1716
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900360


Abstract: 
A four-dimensional memristive system is constructed using a novel ideal memristor with cosine memductance. Due to the special memductance nonlinearity, this memristive system has a line equilibrium set (0, 0, 0, δ) located along the coordinate of the inner state variable of the memristor, whose stability is periodically varied with a change of δ. Nonlinear and one-dimensional initial offset boosting behaviors, which are triggered by not only the initial condition of the memristor but also other two initial conditions, are numerically uncovered. Specifically, a wide variety of coexisting attractors with different positions and topological structures are revealed along the boosting route. Finally, circuit simulations are performed by Power SIMulation (PSIM) to confirm the unique dynamical features.

余弦忆导忆阻系统周期变化初值位移调控行为

摘要:利用一种新型余弦忆导理想忆阻,构造一个四维忆阻系统。由于忆导函数特殊的非线性,忆阻系统具有沿忆阻内部状态变量坐标轴分布的线平衡点集(0, 0, 0, δ),且平衡点集稳定性随δ变化而周期性演化。数值仿真揭示了忆阻系统非线性、一维的初值位移调控行为,它不仅可由忆阻状态初值触发,也可由其他两个系统状态初值引发。特别地,在位移调控路线上,可以观测到多种具有不同位置和拓扑结构的共存吸引子。通过PSIM电路仿真对该特殊动力学特性进行了验证。

关键词:初值位移调控;忆阻系统;忆导;线平衡点集

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bao BC, Jiang T, Wang GY, et al., 2017. Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonl Dynam, 89(2):1157-1171.

[2]Bao H, Hu AH, Liu WB, et al., 2019a. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans Neur Netw Learn Syst, in press.

[3]Bao H, Liu WB, Chen M, 2019b. Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit. Nonl Dynam, 96(3):1879-1894.

[4]Bayani A, Rajagopal K, Khalaf AJM, et al., 2019. Dynamical analysis of a new multistable chaotic system with hidden attractor: antimonotonicity, coexisting multiple attractors, and offset boosting. Phys Lett A, 383(13):1450-1456.

[5]Chen M, Feng Y, Bao H, et al., 2018. State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium. Chaos Sol Fract, 115:313-324.

[6]Chen M, Feng Y, Bao H, et al., 2019. Hybrid state variable incremental integral for reconstructing extreme multi-stability in memristive jerk system with cubic nonlinearity. Complexity, 2019:8549472.

[7]Chen M, Sun MX, Bao H, et al., 2020. Flux-charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans Ind Electron, 67(3):2197-2206.

[8]Chua L, 2014. If it’s pinched it’s a memristor. Semicond Sci Technol, 29(10):104001.

[9]Di Marco M, Forti M, Pancioni L, 2018. Stability of memristor neural networks with delays operating in the flux-charge domain. J Franklin Inst, 355(12):5135-5162.

[10]Dongale TD, Pawar PS, Tikke RS, et al., 2018. Mimicking the synaptic weights and human forgetting curve using hydrothermally grown nanostructured CuO memristor device. J Nanosci Nanotechnol, 18(2):984-991.

[11]Fonzin TF, Srinivasan K, Kengne J, et al., 2018. Coexisting bifurcations in a memristive hyperchaotic oscillator. AEU Int J Electron Commun, 90:110-122.

[12]Innocenti G, di Marco M, Forti M, et al., 2019. Prediction of period doubling bifurcations in harmonically forced memristor circuits. Nonl Dynam, 96(2):1169-1190.

[13]Jin PP, Wang GY, Iu HHC, et al., 2018. A locally active memristor and its application in a chaotic circuit. IEEE Trans Circ Syst II Expr Brief, 65(2):246-250.

[14]Karakaya B, Gülten A, Frasca M, 2019. A true random bit generator based on a memristive chaotic circuit: analysis, design and FPGA implementation. Chaos Sol Fract, 119:143-149.

[15]Khorashadizadeh S, Majidi MH, 2018. Synchronization of two different chaotic systems using Legendre polynomials with applications in secure communications. Front Inform Technol Electron Eng, 19(9):1180-1190.

[16]Li CB, Sprott JC, 2016. Variable-boostable chaotic flows. Optik, 127(22):10389-10398.

[17]Li CB, Sprott JC, 2018. An infinite 3-D quasiperiodic lattice of chaotic attractors. Phys Lett A, 382(8):581-587.

[18]Ma J, Chen ZQ, Wang ZL, et al., 2015. A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonl Dynam, 81(3):1275-1288.

[19]Mezatio BA, Motchongom MT, Tekam BRW, et al., 2019. A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability. Chaos Sol Fract, 120:100-115.

[20]Mostaghimi S, Nazarimehr F, Jafari S, et al., 2019. Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow. Appl Math Comput, 348:42-56.

[21]Mouelas AN, Fozin TF, Kengne R, et al., 2019. Extremely rich dynamical behaviors in a simple nonautonomous Jerk system with generalized nonlinearity: hyperchaos, intermittency, offset-boosting and multistability. Int J Dynam Contr, in press.

[22]Mvogo A, Takembo CN, Fouda HPE, et al., 2017. Pattern formation in diffusive excitable systems under magnetic flow effects. Phys Lett A, 381(28):2264-2271.

[23]Negou AN, Kengne J, 2018. Dynamic analysis of a unique jerk system with a smoothly adjustable symmetry and nonlinearity: reversals of period doubling, offset boosting and coexisting bifurcations. AEU Int J Electron Commun, 90:1-19.

[24]Nie XB, Zheng WX, Cao JD, 2015. Multistability of memristive Cohen–Grossberg neural networks with non- monotonic piecewise linear activation functions and time- varying delays. Neur Netw, 71:27-36.

[25]Njitacke ZT, Kengne J, Tapche RW, et al., 2018. Uncertain destination dynamics of a novel memristive 4D autonomous system. Chaos Sol Fract, 107:177-185.

[26]Peng GY, Min FH, Wang ER, 2018. Circuit implementation, synchronization of multistability, and image encryption of a fourwing memristive chaotic system. J Electron Comput Eng, 2018:8649294.

[27]Pham VT, Vaidyanathan S, Volos CK, et al., 2016. A novel memristive time-delay chaotic system without equilibrium points. Eur Phys J Spec Top, 225(1):127-136.

[28]Pham VT, Akgul A, Volos C, et al., 2017. Dynamics and circuit realization of a no-equilibrium chaotic system with a boostable variable. AEU Int J Elctron Commun, 78:134-140.

[29]Rajagopal K, Nazarimehr F, Karthikeyan A, et al., 2019. Dynamics of a neuron exposed to integer- and fractional-order discontinuous external magnetic flux. Front Inform Technol Electron Eng, 20(4):584-590.

[30]Sangwan VK, Lee HS, Bergeron H, et al., 2018. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 554(7693):500-504.

[31]Sprott JC, Jafari S, Khalaf AJM, et al., 2017. Megastability: coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. Eur Phys J Spec Top, 226(9):1979-1985.

[32]Sun JW, Zhao XT, Fang J, et al., 2018. Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonl Dynam, 94(4):2879-2887.

[33]Tang WKS, Zhong GO, Chen G, et al., 2001. Generation of n-scroll attractors via sine function. IEEE Trans Circ Syst Fundam Theor Appl, 48(11):1369-1372.

[34]Varshney V, Sabarathinam S, Prasad A, et al., 2018. Infinite number of hidden attractors in memristor-based autonomous duffing oscillator. Int J Bifurc Chaos, 28(1): 1850013.

[35]Wang N, Bao BC, Xu Q, et al., 2018. Emerging multi-double-scroll attractor from variable-boostable chaotic system excited by multi-level pulse. J Eng, 2018(1):42-44.

[36]Wang Z, Akgul A, Pham VT, et al., 2017. Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors. Nonl Dynam, 89(3):1877-1887.

[37]Wolf A, Swift JB, Swinney HL, et al., 1985. Determining Lyapunov exponents from a time series. Phys D Nonl Phenom, 16(3):285-317.

[38]Wu HG, Ye Y, Bao BC, et al., 2019. Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system. Chaos Sol Fract, 121:178-185.

[39]Xu Q, Zhang QL, Jiang T, et al., 2018. Chaos in a second-order non-autonomous Wien-bridge oscillator without extra nonlinearity. Circ World, 44(3):108-114.

[40]Yuan F, Deng Y, Li YX, et al., 2019. The amplitude, frequency and parameter space boosting in a memristor– meminductor-based circuit. Nonl Dynam, 96(1):389-405.

[41]Zhang S, Zeng YC, Li ZJ, et al., 2018. Hidden extreme multi-stability, antimonotonicity and offset boosting control in a novel fractional-order hyperchaotic system without equilibrium. Int J Bifurc Chaos, 28(13):1850167.

[42]Zhang YM, Guo M, Dou G, et al., 2018. A physical SBT-memristor-based Chua’s circuit and its complex dynamics. Chaos, 28(8):083121.

[43]Zheng MW, Li LX, Peng HP, et al., 2018. Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks. Commun Nonl Sci Numer Simul, 59:272-291.

[44]Zhou E, Fang L, Yang BB, 2019. A general method to describe forgetting effect of memristors. Phys Lett A, 383(10):942-948.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE