Full Text:   <9915>

Summary:  <1604>

CLC number: TN928

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-05-01

Cited: 0

Clicked: 6615

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhao Yi

https://orcid.org/0000-0001-7131-4232

Weixia Zou

https://orcid.org/0000-0002-1452-9787

Xuebin Sun

https://orcid.org/0000-0002-7508-4945

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.6 P.777-789

http://doi.org/10.1631/FITEE.2000515


Prior information based channel estimation for millimeter-wave massive MIMO vehicular communications in 5G and beyond


Author(s):  Zhao Yi, Weixia Zou, Xuebin Sun

Affiliation(s):  MOE Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   yz17tx@bupt.edu.cn, zwx0218@bupt.edu.cn

Key Words:  Massive multiple-input multiple-output, Millimeter wave, Channel estimation, Vehicular communication, Time-varying



Abstract: 
millimeter wave (mmWave) has been claimed as the viable solution for high-bandwidth vehicular communications in 5G and beyond. To realize applications in future vehicular communications, it is important to take a robust mmWave vehicular network into consideration. However, one challenge in such a network is that mmWave should provide an ultra-fast and high-rate data exchange among vehicles or vehicle-to-infrastructure (V2I). Moreover, traditional real-time channel estimation strategies are unavailable because vehicle mobility leads to a fast variation mmWave channel. To overcome these issues, a channel estimation approach for mmWave V2I communications is proposed in this paper. Specifically, by considering a fast-moving vehicle secnario, a corresponding mathematical model for a fast time-varying channel is first established. Then, the temporal variation rule between the base station and each mobile user and the determined direction-of-arrival are used to predict the time-varying channel prior information (PI). Finally, by exploiting the PI and the characteristics of the channel, the time-varying channel is estimated. The simulation results show that the scheme in this paper outperforms traditional ones in both normalized mean square error and sum-rate performance in the mmWave time-varying vehicular system.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE