CLC number: TN929.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-08-09
Cited: 0
Clicked: 881
Citations: Bibtex RefMan EndNote GB/T7714
Na LI, Yuanyuan GAO, Kui XU, Xiaochen XIA, Huazhi HU, Yang LI, Yueyue ZHANG. Secure resource allocation against colluding eavesdropping in a user-centric cell-free massive multiple-input multiple-output system[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(4): 500-512.
@article{title="Secure resource allocation against colluding eavesdropping in a user-centric cell-free massive multiple-input multiple-output system",
author="Na LI, Yuanyuan GAO, Kui XU, Xiaochen XIA, Huazhi HU, Yang LI, Yueyue ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="4",
pages="500-512",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200599"
}
%0 Journal Article
%T Secure resource allocation against colluding eavesdropping in a user-centric cell-free massive multiple-input multiple-output system
%A Na LI
%A Yuanyuan GAO
%A Kui XU
%A Xiaochen XIA
%A Huazhi HU
%A Yang LI
%A Yueyue ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 4
%P 500-512
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200599
TY - JOUR
T1 - Secure resource allocation against colluding eavesdropping in a user-centric cell-free massive multiple-input multiple-output system
A1 - Na LI
A1 - Yuanyuan GAO
A1 - Kui XU
A1 - Xiaochen XIA
A1 - Huazhi HU
A1 - Yang LI
A1 - Yueyue ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 4
SP - 500
EP - 512
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200599
Abstract: We investigate the resource allocation problem of a cell-free massive multiple-input multiple-output system under the condition of colluding eavesdropping by multiple passive eavesdroppers. To address the problem of limited pilot resources, a scheme is proposed to allocate the pilot with the minimum pollution to users based on access point selection and optimize the pilot transmission power to improve the accuracy of channel estimation. Aiming at the secure transmission problem under a colluding eavesdropping environment by multiple passive eavesdroppers, based on the local partial zero-forcing precoding scheme, a transmission power optimization scheme is formulated to maximize the system’s minimum security spectral efficiency. Simulation results show that the proposed scheme can effectively reduce channel estimation error and improve system security.
[1]Alonzo M, Buzzi S, Zappone A, et al., 2019. Energy-efficient power control in cell-free and user-centric massive MIMO at millimeter wave. IEEE Trans Green Commun Netw, 3(3):651-663.
[2]Ammar HA, Adve R, Shahbazpanahi S, et al., 2022a. Downlink resource allocation in multiuser cell-free MIMO networks with user-centric clustering. IEEE Trans Wirel Commun, 21(3):1482-1497.
[3]Ammar HA, Adve R, Shahbazpanahi S, et al., 2022b. Distributed resource allocation optimization for user-centric cell-free MIMO networks. IEEE Trans Wirel Commun, 21(5):3099-3115.
[4]Attarifar M, Abbasfar A, Lozano A, 2018. Random vs structured pilot assignment in cell-free massive MIMO wireless networks. Proc IEEE Int Conf on Communications Workshops, p.1-6.
[5]Bashar M, Ngo HQ, Burr AG, et al., 2018. On the performance of backhaul constrained cell-free massive MIMO with linear receivers. Proc 52nd Asilomar Conf on Signals, Systems, and Computers, p.624-628.
[6]Björnson E, Sanguinetti L, 2020. Scalable cell-free massive MIMO systems. IEEE Trans Commun, 68(7):4247-4261.
[7]Björnson E, Hoydis J, Sanguinetti L, 2017. Massive MIMO networks: spectral, energy, and hardware efficiency. Found Trends Signal Process, 11(3-4):154-655.
[8]Boroujerdi MN, Abbasfar A, Ghanbari M, 2017. Antenna assignment in cell free massive MIMO systems. Proc Iranian Conf on Electrical Engineering, p.1747-1751.
[9]Buzzi S, D’Andrea C, 2017a. Cell-free massive MIMO: user-centric approach. IEEE Wirel Commun Lett, 6(6):706-709.
[10]Buzzi S, D’Andrea C, 2017b. User-centric communications versus cell-free massive MIMO for 5G cellular networks. Proc 21st Int ITG Workshop on Smart Antennas, p.1-6.
[11]Buzzi S, D’Andrea C, Fresia M, et al., 2021. Pilot assignment in cell-free massive MIMO based on the Hungarian algorithm. IEEE Wirel Commun Lett, 10(1):34-37.
[12]Chen SF, Zhang JY, Björnson E, et al., 2021. Structured massive access for scalable cell-free massive MIMO systems. IEEE J Select Areas Commun, 39(4):1086-1100.
[13]Choi J, Park J, 2021. Sum secrecy spectral efficiency maximization in downlink MU-MIMO: colluding eavesdroppers. IEEE Trans Veh Technol, 70(1):1051-1056.
[14]Demir ÖT, Björnson E, Sanguinetti L, 2021. Foundations of user-centric cell-free massive MIMO. Found Trends Signal Process, 14(3-4):162-472.
[15]Dong GN, Zhang HX, Jin S, et al., 2019. Energy-efficiency-oriented joint user association and power allocation in distributed massive MIMO systems. IEEE Trans Veh Technol, 68(6):5794-5808.
[16]Huang QH, Burr A, 2017. Compute-and-forward in cell-free massive MIMO: great performance with low backhaul load. Proc IEEE Int Conf on Communications Workshops, p.601-606.
[17]Interdonato G, Ngo HQ, Frenger P, et al., 2019a. Downlink training in cell-free massive MIMO: a blessing in disguise. IEEE Trans Wirel Commun, 18(11):5153-5169.
[18]Interdonato G, Björnson E, Ngo HQ, et al., 2019b. Ubiquitous cell-free massive MIMO communications. EURASIP J Wirel Commun Netw, 2019(1):197.
[19]Larsson EG, Edfors O, Tufvesson F, et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 52(2):186-195.
[20]Liu H, Zhang JY, Zhang XD, et al., 2020a. Tabu-search-based pilot assignment for cell-free massive MIMO systems. IEEE Trans Veh Technol, 69(2):2286-2290.
[21]Liu H, Zhang JY, Jin S, et al., 2020b. Graph coloring based pilot assignment for cell-free massive MIMO systems. IEEE Trans Veh Technol, 69(8):9180-9184.
[22]Mendoza CF, Schwarz S, Rupp M, 2020. Cluster formation in scalable cell-free massive MIMO networks. Proc 16th Int Conf on Wireless and Mobile Computing, Networking and Communications, p.62-67.
[23]Mirmohseni M, Papadimitratos P, 2014. Colluding eavesdroppers in large cooperative wireless networks. Proc Iran Workshop on Communication and Information Theory, p.1-6.
[24]Ngo HQ, Ashikhmin A, Yang H, et al., 2015. Cell-free massive MIMO: uniformly great service for everyone. Proc 16th Int Workshop on Signal Processing Advances in Wireless Communications, p.201-205.
[25]Ngo HQ, Ashikhmin A, Yang H, et al., 2017. Cell-free massive MIMO versus small cells. IEEE Trans Wirel Commun, 16(3):1834-1850.
[26]Ngo HQ, Tran LN, Duong TQ, et al., 2018. On the total energy efficiency of cell-free massive MIMO. IEEE Trans Green Commun Netw, 2(1):25-39.
[27]Sarker M, Fapojuwo AO, 2021. Granting massive access by adaptive pilot assignment scheme for scalable cell-free massive MIMO systems. Proc 93rd Vehicular Technology Conf, p.1-5.
[28]Timilsina S, Kudathanthirige D, Amarasuriya G, 2018. Physical layer security in cell-free massive MIMO. Proc IEEE Global Communications Conf, p.1-7.
[29]Tulino AM, Verdú S, 2004. Random matrix theory and wireless communications. Commun Inform Theory, 1(1):1-82.
[30]van Chien T, Björnson E, Larsson EG, 2020. Joint power allocation and load balancing optimization for energy-efficient cell-free massive MIMO networks. IEEE Trans Wirel Commun, 19(10):6798-6812.
[31]Vu TX, Chatzinotas S, ShahbazPanahi S, et al., 2020. Joint power allocation and access point selection for cell-free massive MIMO. Proc IEEE Int Conf on Communications, p.1-6.
[32]Xia XJ, Fan ZQ, Luo WY, et al., 2023. Joint uplink power control, downlink beamforming, and mode selection for secrecy cell-free massive MIMO with network-assisted full duplexing. IEEE Syst J, 17(1):720-731.
[33]Yang MQ, Guo DX, Huang YZ, et al., 2016. Physical layer security with threshold-based multiuser scheduling in multi-antenna wireless networks. IEEE Trans Commun, 64(12):5189-5202.
[34]Yu Y, Liu SM, Yuan WN, et al., 2020. Robust secure beamforming for multi-receiver multi-eavesdropper MIMO SWIPT systems. Proc IEEE Global Communications Conf, p.1-6.
Open peer comments: Debate/Discuss/Question/Opinion
<1>