CLC number: O343.8
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 7
Clicked: 5507
WANG Yun, XU Rong-qiao, DING Hao-jiang. Free vibration of piezoelectric annular plate[J]. Journal of Zhejiang University Science A, 2003, 4(4): 379-387.
@article{title="Free vibration of piezoelectric annular plate",
author="WANG Yun, XU Rong-qiao, DING Hao-jiang",
journal="Journal of Zhejiang University Science A",
volume="4",
number="4",
pages="379-387",
year="2003",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0379"
}
%0 Journal Article
%T Free vibration of piezoelectric annular plate
%A WANG Yun
%A XU Rong-qiao
%A DING Hao-jiang
%J Journal of Zhejiang University SCIENCE A
%V 4
%N 4
%P 379-387
%@ 1869-1951
%D 2003
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0379
TY - JOUR
T1 - Free vibration of piezoelectric annular plate
A1 - WANG Yun
A1 - XU Rong-qiao
A1 - DING Hao-jiang
J0 - Journal of Zhejiang University Science A
VL - 4
IS - 4
SP - 379
EP - 387
%@ 1869-1951
Y1 - 2003
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0379
Abstract: General solutions for coupled three dimensional equations of piezoelectric media were used in this work to obtain some analytical solutions for free vibration of piezoelectric annular plates. These solutions not only satisfy the governing equations at every point in the concerned region but also satisfy the prescribed boundary conditions at every point on the boundaries. Therefore, they are three-dimensional exact. Numerical results are finally tabulated.
[1]Chen, W. Q., Xu, R. Q. and Ding, H. J., 1998. On free vibration of piezoelectric composite rectangular plates. J Sound Vib, 218(4): 741-748.
[2]Ding, H. J., Chen, B. and Liang, J., 1996. General solutions for coupled equations for piezoelectric media. Int J Solids Struct, 33(16): 2283-2298.
[3]Ding, H. J., Xu, R. Q., Chi, Y. W. and Chen, W. Q., 1999. Free axisymmetric vibration of transversely isotropic piezoelectric circular plates. Int J Solids Struct, 36(30): 4629-4652.
[4]Ding, H. J., Xu, R. Q. and Chen, W. Q., 2000. Exact solutions for free vibration of transversely isotropic piezoelectric circular plates. Acta Mechanica Sinica (English Series), 16(2): 141-147.
[5]Dokmeci, M. C., 1980. Recent advances: vibrations of piezoelectric crystals. Int J Eng Sci, 18(3): 431-448.
[6]Gao, J. X., Shen, Y. P. and Wang, J., 1998. Three dimensional analysis for free vibration of rectangular composite laminates with piezoelectric layers. J Sound Vib, 213(2): 383-390.
[7]Heyliger, P. and Saravanos, D. A., 1995. Exact free-vibration analysis of laminated plates with embedded piezoelectric layers. J Acoust Soc Am, 98(3): 1547-1557.
[8]Kapuria, S., Dumir, P. C. and Segupta, S., 1998. Three-dimensional axisymmetric piezothermoelastic solution of a transversely isotropic piezoelectric clamped circular plate. ASEM J. Appl. Mech., 65(1): 178-183.
[9]Lawson, A. W., 1942. The vibration of piezoelectric plates. Phys Rev, 62(7): 71-76.
[10]Lee, P. C. Y., Syngellakis, S. and Hou, J. P., 1987. A two-dimensional theory for high-frequency vibrations of piezoelectric crystal plates with or without electrode. J Appl Phys, 61(4): 1249-1262.
[11]Mindlin, R. D., 1952. Forced thickness-shear and flexural vibration of piezoelectric crystal plates. J Appl Phys, 23(1): 83-88.
[12]Mindlin, R. D., 1972. High Frequency vibration of piezoelectric crystal plates. Int J Solids Struct, 8(7): 895-906.
[13]Ray, M. C., Bhattacharya, R. and Samanta, B., 1998. Exact solutions for dynamic analysis of composite plates with distributed piezoelectric layers. Comp Struct, 66(6): 737-743.
[14]Wang, J. and Yang, J. S., 2000. Higher-order theories of piezoelectric plates and applications. Appl. Mech. Rev., 53(4): 87-99.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
ali@professor<ali\_sayegah03@yahoo.com>
2012-03-30 17:31:53
thanks