Full Text:   <4900>

Summary:  <2199>

CLC number: U213

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-05-21

Cited: 0

Clicked: 8574

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.6 P.385-394

http://doi.org/10.1631/jzus.A1300163


Measurements and analysis of track irregularities on high speed maglev lines*


Author(s):  Jin Shi1, Wen-shan Fang1, Ying-jie Wang1, Yang Zhao2

Affiliation(s):  1. Department of Road and Railway Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; more

Corresponding email(s):   jshi@bjtu.edu.cn

Key Words:  Maglev train, Track irregularity, Deviation, Power spectrum density (PSD), Air gap


Share this article to: More |Next Article >>>

Jin Shi, Wen-shan Fang, Ying-jie Wang, Yang Zhao. Measurements and analysis of track irregularities on high speed maglev lines[J]. Journal of Zhejiang University Science A, 2014, 15(6): 385-394.

@article{title="Measurements and analysis of track irregularities on high speed maglev lines",
author="Jin Shi, Wen-shan Fang, Ying-jie Wang, Yang Zhao",
journal="Journal of Zhejiang University Science A",
volume="15",
number="6",
pages="385-394",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300163"
}

%0 Journal Article
%T Measurements and analysis of track irregularities on high speed maglev lines
%A Jin Shi
%A Wen-shan Fang
%A Ying-jie Wang
%A Yang Zhao
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 6
%P 385-394
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300163

TY - JOUR
T1 - Measurements and analysis of track irregularities on high speed maglev lines
A1 - Jin Shi
A1 - Wen-shan Fang
A1 - Ying-jie Wang
A1 - Yang Zhao
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 6
SP - 385
EP - 394
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300163


Abstract: 
Track irregularities have an obvious effect on the running stability and ride quality of maglev trains traveling at high speeds. We developed a measurement principle and data processing method which were applied to the high speed maglev line operating. The method, which includes partial filtering, integration, resampling of signal, and a low pass Butterworth filter, was used to calculate the irregularities of the maglev line. The spectra of the sample space were evaluated. A 7-parameter power spectrum density (PSD) function of line irregularities was fitted, based on the measured data. Analysis of the results showed that the maglev stator plane irregularities were better than conventional railway vertical rail irregularities when the wavelength was 5–100 m, and worse when the wavelength was 1–5 m. The PSD of maglev guidance plane irregularities was similar to that of cross level GRSHL (German railway spectra of high irregularity) when the wavelength was 10–100 m. The irregularities were clearly worse than cross level rail irregularities in a conventional railway when the wavelength was 1–10 m. This suggests that short-wavelength track irregularities of a maglev line caused by deviation and inclination of the stator plane should be minimized by strictly controlling the machining error of functional components during construction and maintenance.

高速磁浮轨道不平顺测试及分析

研究目的:提出高速磁浮轨道不平顺处理方法,分析不平顺特征,拟合形成轨道谱,为线路空间维护提供参考。
创新要点:实现了对高速磁浮轨道不平顺的提取,确定了轨道谱参数。
研究方法:基于惯性基准法,运用数字信号处理方法实现对轨道不平顺的提取,采用最小二乘法拟合得到定子面和导向面七参数轨道谱。
重要结论:定子面和导向面分别在5–100 m和10–100 m波长范围内平顺性状态较好,由功能件安装等引起的1–5 m和1–10 m波长范围内的偏差应严格控制。

关键词:磁浮列车;轨道不平顺;功率谱;间隙

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Arulampalam, S., Maskell, S., Gordon, N., 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174-188. 


[2] Chen, G., Zhai, W.M., 2004. A new wheel/rail spatially dynamic coupling model and its verification. Vehicle System Dynamics, 41(4):301-322. 


[3] Chen, X.M., Wang, L., Tao, X.X., 2008. Fitting method of track spectrum for main line railway in China. Journal of Traffic and Transportation Engineering, (in Chinese),8(1):19-22. 

[4] Deng, T.B., 2005. Design of arbitrary-phase variable digital filters using SVD-based vector-array decomposition. IEEE Transactions on Circuits System, 52(1):148-167. 


[5] Fries, R.H., Coffey, B.M., 1990. A state-space approach to the synthesis of random vertical and crosslevel rail irregularities. Journal of Dynamic Systems, Measurement, and Control, 112(1):83-87. 

[6] Kwon, S.D., Lee, J.S., Moon, J.W., 2008. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind. Engineering Structures, 30(12):3445-3456. 


[7] Lee, J.S., Kwon, S.D., Kim, M.Y., 2009. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges. Journal of Sound and Vibration, 328(3):301-317. 


[8] Museros, P., Alarcn, E., 2005. Influence of the second bending mode on the response of high-speed bridges at resonance. Journal of Structural Engineering, ASCE, 131(3):405-415. 


[9] Nieters, W., 2004. Guideway Monitoring during Operational Use on the First Transrapid Line in Shanghai. , The 18th International Conference on Magnetically Levitated Systems and Linear Drives, Bangkok, Thailand, :

[10] Schwind, G., 2006. Guideway. , The 19th International Conference on Magnetically Levitated Systems and Linear Drives, Dresden, Germany, :

[11] Shi, J., Wang, Y.J., 2011. Dynamic response analysis of single-span guideway caused by high speed maglev train. Latin American Journal of Solids and Structures, 8(4):213-218. 


[12] Siebert, W.M., 1986. Circuit, Signal, and Systems, The MIT Press, McGraw-Hill Book Company,:

[13] Tsunashima, H., Abe, M., 1998. Static and dynamic performance of permanent magnet suspension for maglev transport vehicle. Vehicle System Dynamics, 29(2):83-111. 


[14] Wu, X.M., 2003.  Maglev Train. Shanghai Scientific & Technical Publishers,China :

[15] Xia, H., Zhang, N., 2005. Dynamic analysis of railway bridge under high-speed trains. Compute Structure, 83(23):1891-1901. 


[16] Yang, Y.B., Yau, J.D., Wu, Y.S., 2004.  Vehicle-bridge Interaction Dynamics: with Application to High-speed Railways. World Scientific,Singapore :

[17] Yau, J.D., 2009. Vibration control of maglev vehicles traveling over a flexible guideway. Journal of Sound and Vibration, 321(1):184-200. 


[18] Yau, J.D., 2010. Interaction response of maglev masses moving on a suspended beam shaken by horizontal ground motion. Journal of Sound and Vibration, 329(2):171-188. 


[19] Zhao, C.F., Zhai, W.M., 2008. Maglev vehicle/guideway vertical random response and ride quality. Vehicle System Dynamics, 38(3):185-210. 


[20] Zheng, S.B., Lin, J.H., Lin, G.B., 2007. Implementation of detection maglev track long wave irregularity based on inertial measurement principle. Journal of Electronic Measurement and Instrument, (in Chinese),21(1):61-65. 


[21] Zhou, D.F., Li, J., Hansen, C.H., 2012. Suppression of the stationary maglev vehicle-bridge coupled resonance using a tuned mass damper. Journal of Vibration and Control, 33(10):1-13. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE