Full Text:   <3732>

Summary:  <1295>

Suppl. Mater.: 

CLC number: TU473.4

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-11-22

Cited: 0

Clicked: 4931

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Min-jie Wen

https://orcid.org/0000-0001-7566-7131

Kui-hua Wang

https://orcid.org/0000-0002-9362-0326

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2021 Vol.22 No.12 P.992-1004

http://doi.org/10.1631/jzus.A2100084


Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory


Author(s):  Min-jie Wen, Kui-hua Wang, Wen-bing Wu, Yun-peng Zhang, Hou-ren Xiong

Affiliation(s):  Research Center of Coastal Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   0620577@zju.edu.cn

Key Words:  Bilayered saturated porous media, Thermo-hydro-mechanical (THM) coupling dynamic response, Fractional thermoelastic theory, Thermal contact resistance, Elastic wave impedance



Abstract: 
Considering the thermal contact resistance and elastic wave impedance at the interface, in this paper we theoretically investigate the thermo-hydro-mechanical (THM) coupling dynamic response of bilayered saturated porous media. fractional thermoelastic theory is applied to porous media with imperfect thermal and mechanical contact. The analytical solutions of the dynamic response of the bilayered saturated porous media are obtained in frequency domain. Furthermore, the effects of fractional derivative parameters and thermal contact resistance on the dynamic response of such media are systematically discussed. Results show that the effects of fractional derivative parameters on the dynamic response of bilayered saturated porous media are related to the thermal contact resistance at the interface. With increasing thermal contact resistance, the displacement, pore water pressure, and stress decrease gradually.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE