Full Text:   <3368>

Summary:  <442>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-01-02

Cited: 0

Clicked: 1428

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2024 Vol.25 No.1 P.65-82

http://doi.org/10.1631/jzus.B23d0004


Bioceramic scaffolds with two-step internal/external modification of copper-containing polydopamine enhance antibacterial and alveolar bone regeneration capability


Author(s):  Xiaojian JIANG, Lihong LEI, Weilian SUN, Yingming WEI, Jiayin HAN, Shuaiqi ZHONG, Xianyan YANG, Zhongru GOU, Lili CHEN

Affiliation(s):  Department of Oral Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; more

Corresponding email(s):   chenlili_1030@zju.edu.cn, zhrgou@zju.edu.cn

Key Words:  Copper-containing polydopamine, Modification, Antibacterial property, Bone regeneration, Angiogenesis, Bioceramic scaffold



Abstract: 
Magnesium-doped calcium silicate (CS) bioceramic scaffolds have unique advantages in mandibular defect repair; however, they lack antibacterial properties to cope with the complex oral microbiome. Herein, for the first time, the CS scaffold was functionally modified with a novel copper-containing polydopamine (PDA(Cu2+‍)) rapid deposition method, to construct internally modified (*P), externally modified (@PDA), and dually modified (*P@PDA) scaffolds. The morphology, degradation behavior, and mechanical properties of the obtained scaffolds were evaluated in vitro. The results showed that the CS*P@PDA had a unique micro-/nano-structural surface and appreciable mechanical resistance. During the prolonged immersion stage, the release of copper ions from the CS*P@PDA scaffolds was rapid in the early stage and exhibited long-term sustained release. The in vitro evaluation revealed that the release behavior of copper ions ascribed an excellent antibacterial effect to the CS*P@PDA, while the scaffolds retained good cytocompatibility with improved osteogenesis and angiogenesis effects. Finally, the PDA(Cu2+)-modified scaffolds showed effective early bone regeneration in a critical-size rabbit mandibular defect model. Overall, it was indicated that considerable antibacterial property along with the enhancement of alveolar bone regeneration can be imparted to the scaffold by the two-step PDA(Cu2+) modification, and the convenience and wide applicability of this technique make it a promising strategy to avoid bacterial infections on implants.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE