Full Text:   <3322>

CLC number: TP273

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2012-10-12

Cited: 1

Clicked: 8081

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2012 Vol.13 No.11 P.850-858

http://doi.org/10.1631/jzus.C1200096


Uniform modeling of parameter dependent nonlinear systems


Author(s):  Najmeh Eghbal, Naser Pariz, Ali Karimpour

Affiliation(s):  Department of Electrical Engineering, Ferdowsi University of Mashhad, P. O. Box 91775-1111, Iran

Corresponding email(s):   najmeh.eghbal@gmail.com

Key Words:  Parameter dependent nonlinear systems, Approximation method, Parameter dependent piecewise affine systems, Modeling



Abstract: 
This paper addresses the problem of approximating parameter dependent nonlinear systems in a unified framework. This modeling has been presented for the first time in the form of parameter dependent piecewise affine systems. In this model, the matrices and vectors defining piecewise affine systems are affine functions of parameters. modeling of the system is done based on distinct spaces of state and parameter, and the operating regions are partitioned into the sections that we call ‘multiplied simplices’. It is proven that this method of partitioning leads to less complexity of the approximated model compared with the few existing methods for modeling of parameter dependent nonlinear systems. It is also proven that the approximation is continuous for continuous functions and can be arbitrarily close to the original one. Next, the approximation error is calculated for a special class of parameter dependent nonlinear systems. For this class of systems, by solving an optimization problem, the operating regions can be partitioned into the minimum number of hyper-rectangles such that the modeling error does not exceed a specified value. This modeling method can be the first step towards analyzing the parameter dependent nonlinear systems with a uniform method.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE