CLC number: TN914
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-11-12
Cited: 0
Clicked: 7345
Yi-Kuei Lin, Cheng-Fu Huang. Stochastic computer network with multiple terminals under total accuracy rate[J]. Journal of Zhejiang University Science C, 2013, 14(2): 75-84.
@article{title="Stochastic computer network with multiple terminals under total accuracy rate",
author="Yi-Kuei Lin, Cheng-Fu Huang",
journal="Journal of Zhejiang University Science C",
volume="14",
number="2",
pages="75-84",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200220"
}
%0 Journal Article
%T Stochastic computer network with multiple terminals under total accuracy rate
%A Yi-Kuei Lin
%A Cheng-Fu Huang
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 2
%P 75-84
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200220
TY - JOUR
T1 - Stochastic computer network with multiple terminals under total accuracy rate
A1 - Yi-Kuei Lin
A1 - Cheng-Fu Huang
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 2
SP - 75
EP - 84
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200220
Abstract: From the viewpoint of service level agreements, data transmission accuracy is one of the critical performances for assessing Internet by service providers and enterprise customers. The stochastic computer network (SCN), in which each edge has several capacities and the accuracy rate, has multiple terminals. This paper is aimed mainly to evaluate the system reliability for an SCN, where system reliability is the probability that the demand can be fulfilled under the total accuracy rate. A minimal capacity vector allows the system to transmit demand to each terminal under the total accuracy rate. This study proposes an efficient algorithm to find all minimal capacity vectors by minimal paths. The system reliability can then be computed in terms of all minimal capacity vectors by the recursive sum of disjoint products (RSDP) algorithm.
[1]Alexopoulos, C., 1995. A note on state-space decomposition methods for analyzing stochastic flow networks. IEEE Trans. Rel., 44(2):354-357.
[2]Amer, P.D., 1982. A measurement center for the NBS local area computer network. IEEE Trans. Comput., C-31(8):723-729.
[3]Aven, T., 1985. Reliability evaluation of multistate systems with multistate components. IEEE Trans. Rel., R-34(5):473-479.
[4]Cheng, S.T., 1998. Topological optimization of a reliable communication network. IEEE Trans. Rel., 47(3):225-233.
[5]Chlamtac, I., 1980. Issues in Design and Measurement of Local Area Networking. 6th Int. Computer Measurement Group Conf., p.32-34.
[6]Choi, B.Y., Park, J., Zhang, Z.L., 2003. Adaptive Random Sampling for Traffic Load Measurement. IEEE Int. Conf. on Communications, p.1552-1556.
[7]Claffy, K.C., Polyzos, G.C., Braun, H.W., 1993. Application of Sampling Methodologies to Network Traffic Characterization. Proc. ACM SIGCOMM, p.194-203.
[8]Feldmann, A., Greenberg, A., Reingold, N., Lund, C., Rexford, J., True, F., 2001. Deriving traffic demands for operational IP networks: methodology and experience. IEEE/ ACM Trans. Network., 9(3):265-279.
[9]Ford, L.R., Fulkerson, D.R., 1962. Flow in Networks. Princeton University Press, USA.
[10]Huang, F.M., Lan, C.W., Yang, J.H., 2009. An optimal QoS-based Web service selection scheme. Inform. Sci., 179(19):3309-3322.
[11]Hudson, J.C., Kapur, K.C., 1985. Reliability bounds for multi-state systems with multistate components. Oper. Res., 33(1):153-160.
[12]Jain, R., Routhier, S.A., 1986. Packet trains: measurements and a new model for computer network traffic. IEEE J. Sel. Areas Commun., 4(6):986-995.
[13]Jane, C.C., Lin, J.S., Yuan, J., 1993. On reliability evaluation of a limited-flow network in terms of minimal cutsets. IEEE Trans. Rel., 42(3):354-361.
[14]Jedwab, J., Phaal, P., Pinna, B., 1992. Traffic Estimation for the Largest Sources, on a Network, Using Packet Sampling with Limited Storage. Technical Report HPL-92-35, HP Labs Technical Report.
[15]Lin, J.S., Jane, C.C., Yuan, J., 1995. On reliability evaluation of a capacitated-flow network in terms of minimal pathsets. Networks, 25(3):131-138.
[16]Lin, Y.K., 2001. A simple algorithm for reliability evaluation of a stochastic-flow network with node failure. Comput. Oper. Res., 28(13):1277-1285.
[17]Lin, Y.K., 2002. Using minimal cuts to evaluate the system reliability of a stochastic flow network with failures at nodes and arcs. Rel. Eng. Syst. Safety, 75(1):41-46.
[18]Lin, Y.K., 2009. Optimal routing policy of a stochastic-flow network. Comput. Ind. Eng., 56(4):1414-1418.
[19]Lin, Y.K., 2010. A stochastic model to study the system capacity for supply chains in terms of minimal cuts. Int. J. Prod. Econ., 124(1):181-187.
[20]Lin, Y.K., Yeh, C.T., 2011. Reliability optimization of component assignment problem for a multistate network in terms of minimal cuts. J. Ind. Manag. Optim., 7(1):211-227.
[21]Mori, T., Takine, T., Pan, J., Kawahara, R., Uchida, M., Goto, S., 2007. Identifying heavy-hitter flows from sampled flow statistics. IEICE Trans. Commun., E90-B(11):3061-3072.
[22]Ramirez-Marquez, J.E., Rocco, C.M., 2009. Stochastic network interdiction optimization via capacitated network reliability modeling and probabilistic solution discovery. Rel. Eng. Syst. Safety, 94(5):913-921.
[23]Ramirez-Marquez, J.E., Rocco, S.C.M., Levitin, G., 2009. Optimal protection of general source-sink networks via evolutionary techniques. Rel. Eng. Syst. Safety, 94(10):1676-1684.
[24]Sausen, P.S., Spohn, M.A., Perkusich, A., 2010. Broadcast routing in wireless sensor networks with dynamic power management and multi-coverage backbones. Inform. Sci., 180(5):653-663.
[25]Wang, J.Z., Varman, P., Xie, C.S., 2011. Optimizing storage performance in public cloud platforms. J. Zhejiang Univ.- Sci. C (Comput. & Electron.), 12(12):951-964.
[26]Xue, J., 1985. On multistate system analysis. IEEE Trans. Rel., R-34(4):329-337.
[27]Yarlagadda, R., Hershey, J., 1991. Fast algorithm for computing the reliability of communication network. Int. J. Electron., 70(3):549-564.
[28]Yeh, W.C., 1998. A revised layered-network algorithm to search for all d-minpaths of a limited-flow acyclic network. IEEE Trans. Rel., 47(4):436-442.
[29]Yeh, W.C., 2004. Multistate network reliability evaluation under the maintenance cost constraints. Int. J. Prod. Econ., 88(1):73-83.
[30]Yeh, W.C., 2005. A new approach to evaluating reliability of multistate networks under the cost constraint. Omega, 33(3):203-209.
[31]Zibanezhad, B., Zamanifar, K., Sadjady, R.S., Rastegari, Y., 2011. Applying gravitational search algorithm in the QoS-based Web service selection problem. J. Zhejiang Univ.-Sci. (Comput. & Electron.), 12(9):730-742.
[32]Zuo, M.J., Tian, Z., Huang, H.Z., 2007. An efficient method for reliability evaluation of multistate networks given all minimal path vectors. IIE Trans., 39(8):811-817.
Open peer comments: Debate/Discuss/Question/Opinion
<1>