Full Text:   <440>

Summary:  <164>

CLC number: TN911.7

On-line Access: 2018-09-04

Received: 2017-11-08

Revision Accepted: 2018-02-05

Crosschecked: 2018-07-12

Cited: 0

Clicked: 1480

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xin Chen

http://orcid.org/0000-0002-0562-0319

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.7 P.919-936

http://doi.org/10.1631/FITEE.1700735


Structural total least squares algorithm for locating multiple disjoint sources based on AOA/TOA/FOA in the presence of system error


Author(s):  Xin Chen, Ding Wang, Rui-Rui Liu, Jie-Xin Yin, Ying Wu

Affiliation(s):  National Digital Switching System Engineering and Technology Research Center, Zhengzhou 450002, China; more

Corresponding email(s):   wang_ding814@aliyun.com

Key Words:  Single-station, Structural total least squares, Inverse iteration, Angle-of-arrival (AOA), Time-of-arrival (TOA), Frequency-of-arrival (FOA), Disjoint sources


Xin Chen , Ding Wang , Rui-Rui Liu , Jie-Xin Yin , Ying Wu . Structural total least squares algorithm for locating multiple disjoint sources based on AOA/TOA/FOA in the presence of system error[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(7): 919-936.

@article{title="Structural total least squares algorithm for locating multiple disjoint sources based on AOA/TOA/FOA in the presence of system error",
author="Xin Chen , Ding Wang , Rui-Rui Liu , Jie-Xin Yin , Ying Wu ",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="7",
pages="919-936",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700735"
}

%0 Journal Article
%T Structural total least squares algorithm for locating multiple disjoint sources based on AOA/TOA/FOA in the presence of system error
%A Xin Chen
%A Ding Wang
%A Rui-Rui Liu
%A Jie-Xin Yin
%A Ying Wu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 7
%P 919-936
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700735

TY - JOUR
T1 - Structural total least squares algorithm for locating multiple disjoint sources based on AOA/TOA/FOA in the presence of system error
A1 - Xin Chen
A1 - Ding Wang
A1 - Rui-Rui Liu
A1 - Jie-Xin Yin
A1 - Ying Wu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 7
SP - 919
EP - 936
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700735


Abstract: 
single-station passive localization technology avoids the complex time synchronization and information exchange between multiple observatories, and is increasingly important in electronic warfare. Based on a single moving station localization system, a new method with high localization precision and numerical stability is proposed when the measurements from multiple disjoint sources are subject to the same station position and velocity displacement. According to the available measurements including the angle-of-arrival (AOA), time-of-arrival (TOA), and frequency-of-arrival (FOA), the corresponding pseudo linear equations are deduced. Based on this, a structural total least squares (STLS) optimization model is developed and the inverse iteration algorithm is used to obtain the stationary target location. The localization performance of the STLS localization algorithm is derived, and it is strictly proved that the theoretical performance of the STLS method is consistent with that of the constrained total least squares method under first-order error analysis, both of which can achieve the Cramér-Rao lower bound accuracy. Simulation results show the validity of the theoretical derivation and superiority of the new algorithm.

系统误差条件下基于AOA/TOA/FOA的多目标结构总体最小二乘算法

概要:单站无源定位系统避免了多个观测站之间复杂的时间同步和信息交换,在电子战中越来越重要。基于单个运动站定位系统,考虑到来自不同目标的观测具有相同的观测站位置及速度误差,提出一种具有高定位精度和数值稳定性的定位方法。根据到达角(AOA)、到达时间(TOA)和到达频率(FOA)等观测量,推导出相应的伪线性方程。在此基础上,提出一种结构总体最小二乘(STLS)优化模型,并利用逆迭代算法获得固定目标的位置。推导了所提算法的定位性能,并通过一阶误差分析证明了STLS算法的理论性能和约束总体最小二乘算法的理论性能一致,两者都能够达到克拉美罗界精度。仿真结果表明了理论推导的正确性和所提算法的优越性。

关键词:单站;结构总体最小二乘;逆迭代;到达角(AOA);到达时间(TOA);到达频率(FOA);多源

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abatzoglou TJ, Mendel JM, Harada GA, 1991. The constrained total least squares technique and its applications to harmonic superresolution. IEEE Trans Signal Process, 39(5):1070-1087.

[2]Antreich F, Nossek JA, Seco-Granados G, et al., 2011. The extended invariance principle for signal parameter estimation in an unknown spatial field. IEEE Trans Signal Process, 59(7):3213-3225.

[3]Bamler R, 1991. Doppler frequency estimation and the Cramer-Rao bound. IEEE Trans Geosci Remote Sens, 29(3):385-390.

[4]Bar-Shalom O, Weiss AJ, 2014. Emitter geolocation using single moving receiver. Signal Process, 105:70-83.

[5]Belouchrani A, Aouada S, 2003. Maximum likelihood joint angle and delay estimation in unknown noise fields. IEEE Int Conf on Acoustics, Speech, and Signal Processing, p.V-265.

[6]Carevic D, 2007. Automatic estimation of multiple target positions and velocities using passive TDOA measurements of transients. IEEE Trans Signal Process, 55(2): 424-436.

[7]Chalise BK, Zhang YD, Amin MG, et al., 2014. Target localization in a multi-static passive radar system through convex optimization. Signal Process, 102:207-215.

[8]de Moor B, 1994. Total least squares for affinely structured matrices and the noisy realization problem. IEEE Trans Signal Process, 42(11):3104-3113.

[9]Doğancay K, 2005. Bearings-only target localization using total least squares. Signal Process, 85(9):1695-1710.

[10]Eldar YC, 2006. Uniformly improving the CramÉr-Rao bound and maximum-likelihood estimation. IEEE Trans Signal Process, 54(8):2943-2956.

[11]Foy WH, 1976. Position-location solutions by Taylor-series estimation. IEEE Trans Aerosp Electron Syst, AES-12(2): 187-194.

[12]Giacometti R, Baussard A, Cornu C, et al., 2016. Accuracy studies for TDOA-AOA localization of emitters with a single sensor. IEEE Radar Conf, p.1-4.

[13]Golub GH, van Loan CF, 2012. Matrix Computations (4th Ed.). The Johns Hopkins University Press, Baltimore, USA.

[14]Griffin A, Alexandridis A, Pavlidi D, et al., 2015. Localizing multiple audio sources in a wireless acoustic sensor network. Signal Process, 107:54-67.

[15]Hao BJ, Li Z, Si JB, et al., 2012. Passive multiple disjoint sources localization using TDOAs and GROAs in the presence of sensor location uncertainties. IEEE Int Conf on Communications, p.47-52.

[16]Ho KC, Lu XN, Kovavisaruch L, 2007. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans Signal Process, 55(2):684-696.

[17]Jia TY, Wang HY, Shen XH, et al., 2017. Bearing-only multiple sources localization and the spatial spectrum. OCEANS, p.1-5.

[18]Kay SM, 1993. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Prentice Hall, Englewood Cliffs, New Jersey, USA, p.465-466.

[19]Knapp C, Carter G, 1976. The generalized correlation method for estimation of time delay. IEEE Trans Acoust Speech Signal Process, 24(4):320-327.

[20]Lemma AN, van der Veen AJ, Deprettere EF, 2003. Analysis of joint angle-frequency estimation using ESPRIT. IEEE Trans Signal Process, 51(5):1264-1283.

[21]Lemmerling P, de Moor B, van Huffel S, 1996. On the equivalence of constrained total least squares and structured total least squares. IEEE Trans Signal Process, 44(11): 2908-2911.

[22]Li J, Zhao YJ, Li DH, 2014. Accurate single-observer passive coherent location estimation based on TDOA and DOA. Chin J Aeronaut, 27(4):913-923.

[23]Li JZ, Pang HW, Guo FC, et al., 2015. Localization of multiple disjoint sources with prior knowledge on source locations in the presence of sensor location errors. Dig Signal Process, 40:181-197.

[24]Li MH, Lu YL, 2008. Angle-of-arrival estimation for localization and communication in wireless networks. 16th European Signal Processing Conf, p.1-5.

[25]Liu FL, Wang JK, Du RY, 2010. Unitary-JAFE algorithm for joint angle-frequency estimation based on Frame-Newton method. Signal Process, 90(3):809-820.

[26]Liu RR, Wang YL, Yin JX, et al., 2017. Passive source localization using importance sampling based on TOA and FOA measurements. Front Inform Technol Electron Eng, 18(8):1167-1179.

[27]Luise M, Reggiannini R, 1995. Carrier frequency recovery in all-digital modems for burst-mode transmissions. IEEE Trans Commun, 43(2-4):1169-1178.

[28]Markovsky I, van Huffel S, 2007. Overview of total least-squares methods. Signal Process, 87(10):2283-2302.

[29]Mir HS, Sahr JD, Hatke GF, et al., 2007. Passive source localization using an airborne sensor array in the presence of manifold perturbations. IEEE Trans Signal Process, 55(6):2486-2496.

[30]Raykar VC, Kozintsev IV, Lienhart R, 2005. Position calibration of microphones and loudspeakers in distributed computing platforms. IEEE Trans Speech Audio Process, 13(1):70-83.

[31]Rockah Y, Schultheiss PM, 1987a. Array shape calibration using sources in unknown location—Part I: far-field sources. IEEE Trans Acoust Speech Signal Process, 35(3): 286-299.

[32]Rockah Y, Schultheiss PM, 1987b. Array shape calibration using sources in unknown locations—Part II: near-field sources and estimator implementation. IEEE Trans Acoust Speech Signal Process, 35(6):724-735.

[33]Shen H, Ding Z, Dasgupta S, et al., 2014. Multiple source localization in wireless sensor networks based on time of arrival measurement. IEEE Trans Signal Process, 62(8): 1938-1949.

[34]So HC, Lin LX, 2011. Linear least squares approach for accurate received signal strength based source localization. IEEE Trans Signal Process, 59(8):4035-4040.

[35]Sun M, Ho KC, 2011. An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties. IEEE Trans Signal Process, 59(7):3434-3440.

[36]Sun XY, Li JD, Huang PY, et al., 2008. Total least-squares solution of active target localization using TDOA and FDOA measurements in WSN. 22nd Int Conf on Advanced Information Networking and Applications, p.995-999.

[37]Torrieri DJ, 1984. Statistical theory of passive location systems. IEEE Trans Aerosp Electron Syst, AES-20(2): 183-198.

[38]Wang D, Zhang L, Wu Y, 2007. Constrained total least squares algorithm for passive location based on bearing-only measurements. Sci China Ser F Inform Sci, 50(4): 576-586.

[39]Wang D, Zhang L, Wu Y, 2009. The structured total least squares algorithm research for passive location based on angle information. Sci China Ser F Inform Sci, 52(6): 1043-1054.

[40]Wang L, Hu AQ, Bai GW, et al., 2011. Enhanced constrained total least squares estimator in TDOA localization for WSNs. Int Conf on Computer Science and Service System, p.389-392.

[41]Wang YY, Chen JT, Fang WH, 2001. TST-MUSIC for joint DOA-delay estimation. IEEE Trans Signal Process, 49(4):721-729.

[42]Weiss AJ, Friedlander B, 1989. Array shape calibration using sources in unknown locations—a maximum likelihood approach. IEEE Trans Acoust Speech Signal Process, 37(12):1958-1966.

[43]Wu H, Chen SX, Zhang YH, et al., 2015. Robust structured total least squares algorithm for passive location. J Syst Eng Electron, 26(5):946-953.

[44]Yang K, An JP, Bu XY, et al., 2010. Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Trans Veh Technol, 59(3): 1558-1562.

[45]Yang L, Ho KC, 2009. An approximately efficient TDOA localization algorithm in closed-form for locating multiple disjoint sources with erroneous sensor positions. IEEE Trans Signal Process, 57(12):4598-4615.

[46]Yin JX, Wu Y, Wang D, 2014. On 2-D direction-of-arrival estimation performance for rank reduction estimator in presence of unexpected modeling errors. Circ Syst Signal Process, 33(2):515-547.

[47]Yu H, Huang G, Gao J, 2012. Constrained total least-squares localisation algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties. IET Radar Sonar Navig, 6(9): 891-899.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE