Full Text:   <2901>

Summary:  <2184>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-12-30

Cited: 0

Clicked: 8520

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Gao-qi He

http://orcid.org/0000-0001-8365-0970

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.3 P.200-211

http://doi.org/10.1631/FITEE.1500253


Shadow obstacle model for realistic corner-turning behavior in crowd simulation


Author(s):  Gao-qi He, Yi Jin, Qi Chen, Zhen Liu, Wen-hui Yue, Xing-jian Lu

Affiliation(s):  Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; more

Corresponding email(s):   hegaoqi@ecust.edu.cn

Key Words:  Corner-turning behavior, Crowd simulation, Safety awareness, Rule-based model


Gao-qi He, Yi Jin, Qi Chen, Zhen Liu, Wen-hui Yue, Xing-jian Lu. Shadow obstacle model for realistic corner-turning behavior in crowd simulation[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(3): 200-211.

@article{title="Shadow obstacle model for realistic corner-turning behavior in crowd simulation",
author="Gao-qi He, Yi Jin, Qi Chen, Zhen Liu, Wen-hui Yue, Xing-jian Lu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="3",
pages="200-211",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500253"
}

%0 Journal Article
%T Shadow obstacle model for realistic corner-turning behavior in crowd simulation
%A Gao-qi He
%A Yi Jin
%A Qi Chen
%A Zhen Liu
%A Wen-hui Yue
%A Xing-jian Lu
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 3
%P 200-211
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500253

TY - JOUR
T1 - Shadow obstacle model for realistic corner-turning behavior in crowd simulation
A1 - Gao-qi He
A1 - Yi Jin
A1 - Qi Chen
A1 - Zhen Liu
A1 - Wen-hui Yue
A1 - Xing-jian Lu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 3
SP - 200
EP - 211
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500253


Abstract: 
This paper describes a novel model known as the shadow obstacle model to generate a realistic corner-turning behavior in crowd simulation. The motivation for this model comes from the observation that people tend to choose a safer route rather than a shorter one when turning a corner. To calculate a safer route, an optimization method is proposed to generate the corner-turning rule that maximizes the viewing range for the agents. By combining psychological and physical forces together, a full crowd simulation framework is established to provide a more realistic crowd simulation. We demonstrate that our model produces a more realistic corner-turning behavior by comparison with real data obtained from the experiments. Finally, we perform parameter analysis to show the believability of our model through a series of experiments.

In this paper the authors present a model for enabling simulated pedestrian to move at the corners of the walls with a realistic trajectory. The proposal model is novel in modeling the corner-turning behaviour. The paper is technically sound which is illustrated by the simulation results and analysis.

基于影子障碍物模型的真实感人群转弯行为模拟

目的:在人群仿真领域中,对行人转弯行为的模拟有待深入研究。现有的模型(如Rojas等)采用预定义曲线的方法模拟行人转弯轨迹,模拟结果缺乏真实感,并不能体现出人群行为的多样性以及行人的心理特征。为了模拟更加具有真实感的人群转弯行为,本文考虑了行人在转弯时扩大视野的安全决策行为,提出了影子障碍物模型和一个完整的、有效的人群模拟框架。
创新点:提出影子障碍物模型,以模拟行人转弯时扩大视野的安全决策行为;提出了集成心理力和物理力的人群模拟框架。
方法:建立影子障碍物相关概念;以行人扩大视野为切入点,制定模拟转弯行为的相关规则,可以判断行人是否处于转弯状态以及如何获得最佳的速度方向。结合全局路径规划、局部行为模拟和物理模拟建立了人群仿真框架。利用该框架进行相关实验,验证模型的准确性和有效性。
结论:本文的模型可以较真实地模拟出行人转弯轨迹(图9);与Rojas等人的模拟结果相比,本文的模型可以较好地刻画行人的心理特征和人群行为的多样性(图10、15)

关键词:转弯行为;人群仿真;安全心理;基于规则的模型

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Béhé, F., Galland, S., Gaud, N., et al., 2014. An ontology-based metamodel for multiagent-based simulations. Simul. Model. Pract. Theory, 40:64-85.

[2]Cui, Y., Qin, G., 2010. Intelligent path planning in 3D scene. Proc. Int. Conf. on Computer Application and System Modeling, p.579-583.

[3]Curtis, S., Snape, J., Manocha, D., 2012. Way portals: efficient multi-agent navigation with line-segment goals. Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, p.15-22.

[4]Fiorini, P., Shiller, Z., 1998. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res., 17(7):760-772.

[5]Guy, S.J., Chhugani, J., Kim, C., et al., 2009. ClearPath: highly parallel collision avoidance for multi-agent simulation. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.177-187.

[6]Hashimoto, K., Yoshimi, T., Mizukawa, M., et al., 2013. A study of collision avoidance between service robot and human at corner—analysis of human behavior at corner. Proc. 10th Int. Conf. on Ubiquitous Robots and Ambient Intelligence, p.383-384.

[7]Helbing, D., Farkas, I., Vicsek, T., 2000. Simulating dynamical features of escape panic. Nature, 407(6803):487-490.

[8]Jin, X., Xu, J., Wang, C.L., et al., 2008. Interactive control of large-crowd navigation in virtual environments using vector fields. IEEE Comput. Graph. Appl., 28(6):37-46.

[9]Kim, S., Guy, S.J., Manocha, D., 2013. Velocity-based modeling of physical interactions in multi-agent simulations. Proc. 12th ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.125-133.

[10]Moussaïd, M., Helbing, D., Theraulaz, G., 2011. How simple rules determine pedestrian behavior and crowd disasters. PNAS, 108(17):6884-6888.

[11]Patil, S., van den Berg, J., Curtis, S., et al., 2011. Directing crowd simulations using navigation fields. IEEE Trans. Visual. Comput. Graph., 17(2):244-254.

[12]Pelechano, N., Allbeck, J.M., Badler, N.I., 2008. Virtual Crowds: Methods, Simulation, and Control. Morgan & Claypool Publishers, USA.

[13]Reynolds, C.W., 1999. Steering behaviors for autonomous characters. Game Developers Conf., p.763-782.

[14]Rojas, F.A., Park, J.H., Yang, H.S., 2013. Group agent-based steering for the realistic corner turning and group movement of pedestrians in a crowd simulation. Proc. Computer Animation and Social Agents, p.1-4.

[15]Shao, W., Terzopoulos, D., 2005. Autonomous pedestrians. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.19-28.

[16]Snape, J., Guy, S.J., Lin, M.C., et al., 2012. Reciprocal collision avoidance and multi-agent navigation for video games. Workshops at the 26th AAAI Conf. on Artificial Intelligence, p.49-52.

[17]Snook, G., 2000. Simplified 3D movement and pathfinding using navigation meshes. Game Program. Gems, 1:288-304.

[18]Thalmann, D., Grillon, H., Maim, J., et al., 2009. Challenges in crowd simulation. Proc. Int. Conf. on CyberWorlds, p.1-12.

[19]van den Berg, J., Lin, M., Manocha, D., 2008. Reciprocal velocity obstacles for real-time multi-agent navigation. Proc. IEEE Int. Conf. on Robotics and Automation, p.1928-1935.

[20]van Toll, W.G., Cook, A.F., Geraerts, R., 2012. Real-time density-based crowd simulation. Comput. Animat. Virt. Worlds, 23(1):59-69.

[21]Watt, A., 1993. 3D Computer Graphics. Addison-Wesley, UK.

[22]Zhou, S., Chen, D., Cai, W., et al., 2010. Crowd modeling and simulation technologies. ACM Trans. Model. Comput. Simul., 20(4):20.1-20.35.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE