Full Text:   <2512>

CLC number: TN959.73

On-line Access: 2016-10-08

Received: 2015-09-25

Revision Accepted: 2016-02-18

Crosschecked: 2016-09-12

Cited: 1

Clicked: 5629

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hui Zhang

http://orcid.org/0000-0002-4304-0411

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.10 P.1095-1106

http://doi.org/10.1631/FITEE.1500311


Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR


Author(s):  Hui Zhang, Jun Hong, Xiao-lan Qiu, Ji-chuan Li, Fang-fang Li, Feng Ming

Affiliation(s):  Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; more

Corresponding email(s):   123happy.zh@163.com

Key Words:  Synthetic aperture radar (SAR), Along-track interferometric, Motion compensation, Residual error, Interferometric phase


Share this article to: More <<< Previous Article|

Hui Zhang, Jun Hong, Xiao-lan Qiu, Ji-chuan Li, Fang-fang Li, Feng Ming. Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(10): 1095-1106.

@article{title="Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR",
author="Hui Zhang, Jun Hong, Xiao-lan Qiu, Ji-chuan Li, Fang-fang Li, Feng Ming",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="10",
pages="1095-1106",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500311"
}

%0 Journal Article
%T Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR
%A Hui Zhang
%A Jun Hong
%A Xiao-lan Qiu
%A Ji-chuan Li
%A Fang-fang Li
%A Feng Ming
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 10
%P 1095-1106
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500311

TY - JOUR
T1 - Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR
A1 - Hui Zhang
A1 - Jun Hong
A1 - Xiao-lan Qiu
A1 - Ji-chuan Li
A1 - Fang-fang Li
A1 - Feng Ming
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 10
SP - 1095
EP - 1106
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500311


Abstract: 
Two approximations, center-beam approximation and reference digital elevation model (DEM) approximation, are used in synthetic aperture radar (SAR) motion compensation procedures. They usually introduce residual motion compensation errors for airborne single-antenna SAR imaging and SAR interferometry. In this paper, we investigate the effects of residual uncompensated motion errors, which are caused by the above two approximations, on the performance of airborne along-track interferometric SAR (ATI-SAR). The residual uncompensated errors caused by center-beam approximation in the absence and in the presence of elevation errors are derived, respectively. Airborne simulation parameters are used to verify the correctness of the analysis and to show the impacts of residual uncompensated errors on the interferometric phase errors for ATI-SAR. It is shown that the interferometric phase errors caused by the center-beam approximation with an accurate DEM could be neglected, while the interferometric phase errors caused by the center-beam approximation with an inaccurate DEM cannot be neglected when the elevation errors exceed a threshold. This research provides theoretical bases for the error source analysis and signal processing of airborne ATI-SAR.

The article adresses the correction of ATI-SAR based on DEM.

运动补偿残余误差对机载顺轨干涉SAR性能的影响

概要:在机载合成孔径雷达(syntheticapertureradar,SAR)运动补偿中一般存在两个近似:波束中心近似和参考高程近似,这两种近似会在机载单天线SAR系统和机载干涉SAR系统成像过程中引入运动补偿残余误差。本文针对机载顺轨干涉SAR(airbornealong-trackinterferometricSAR,ATI-SAR)系统,分析了上述两种近似导致的运动补偿残余误差对干涉性能的影响。首先针对机载双天线ATI-SAR系统,在不存在参考高程误差和存在参考高程误差两种情况下分别推导了其运动补偿残余误差,然后利用机载仿真参数证明了推导公式的正确性,并展示了运补残余误差对ATI-SAR干涉相位的影响程度。结果表明,当不存在参考高程误差时,由于运补残余误差导致的干涉相位误差可以忽略;而当存在参考高程误差且参考高程误差大于某个门限值时,对于相应的测速精度要求,由于波束中心近似导致的干涉相位误差不可忽略。本文的研究为机载ATI-SAR误差源分析和信号处理提供了理论基础。

关键词:合成孔径雷达(SAR);顺轨干涉;运动补偿;残余误差;干涉相位

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Budillon, A., Pascazio, V., Schirinzi, G., 2008. Estimation of radial velocity of moving targets by along-track interferometric SAR systems. IEEE Geosci. Remote Sens. Lett., 5(3):349-353.

[2]Chapin, E., Chen, C.W., 2009. Airborne along-track interferometry for GMTI. IEEE Aerosp. Electron. Syst. Mag., 24(5):13-18.

[3]Chen, C.W., 2004. Performance assessment of along-track interferometry for detecting ground moving targets. Proc. IEEE Radar Conf., 99-104.

[4]Cumming, I.G., Wong, F.H., 2004. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, London.

[5]Dall, J., Grinder-Pedersen, J., Madsen, S.N., 1997. Calibration of a high resolution airborne 3D SAR. IEEE Int. Geoscience and Remote Sensing Symp., p.1018-1021.

[6]Fischer, J., Baumgartner, S., Reigber, A., et al., 2008. Geometric, radiometric, polarimetric and along-track interferometric calibration of the new F-SAR system of DLR in X-Band. 7th European Conf. on Synthetic Aperture Radar, p.109-112.

[7]Fornaro, G., 1999. Trajectory deviations in airborne SAR: analysis and compensatin. IEEE Trans. Aerosp. Electron. Syst., 35(3):997-1009.

[8]Fornaro, G., Franceschetti, G., Perna, S., 2005. Motion compemsatiom errors: effects on the accuracy of airborne SAR images. IEEE Trans. Aerosp. Electr. Syst., 41(4): 1338-1352.

[9]Fornaro, G., Franceschetti, G., Perna, S., 2006. On center-beam approximation in SAR motion compensation. IEEE Geosci. Remote Sens. Lett., 3(2):276-280.

[10]Gierull, C.H., 2003. Digital Channel Balancing of Along-Track Interferometric SAR Data. Technical Memorandum No. DRDC-OTTAWA-TM-2003-024, Defence R&D Canada-Ottawa.

[11]Glerull, C.H., 2002. Moving Target Detection with Along-Track SAR Interferometry: a Theoretical Analysis. Technical Memorandum No. DRDC-OTTAWA-TR-2002-084, Defence R&D Canada-Ottawa.

[12]Goldstein, R.M., Zebker, H.A., 1987. Interferometric radar measurement of ocean surface currents. Nature, 328(6132):707-709.

[13]Gonzalez, J.H., Bachmann, M., Krieger, G., et al., 2010. Development of the TanDEM-X calibration concept: analysis of systematic errors. IEEE Trans. Geosci. Remote Sens., 48(2):716-726.

[14]Hirsch, O., 2001. Calibration of an airborne along-track interferometric SAR system for accurate measurement of velocities. IEEE Int. Geoscience and Remote Sensing Symp., p.558-560.

[15]Imel, D.A., 2002. AIRSAR along-track interferometry data. AIRSAR Earth Science and Applications Workshop, p.1-58.

[16]Li, F.F., Qiu, X.L., Meng, D.D., et al., 2014. Effects of motion compensation errors on performance of airborne dual-antenna InSAR. J. Electr. Inform. Technol., 35(3): 559-567 (in Chinese).

[17]Madsen, S.N., Skou, N., Woelders, K., et al., 1996. EMISAR single pass topographic SAR interferometer modes. IEEE Geoscience and Remote Sensing Symp., p.674-676.

[18]Marom, M., Goldstein, R.M., Thornton, E.B., et al., 1990. Remote sensing of ocean wave spectra by interferometric synthetic aperture radar. Nature, 345(6278):793-795.

[19]Moccia, A., Rufino, G., 2001. Spaceborne along-track SAR interferometry: performance analysis and mission scenarios. IEEE Trans. Aerosp. Electron. Syst., 37(1): 199-213.

[20]Moreira, A., Huang, Y.H., 1994. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. Geosci. Remote Sens., 32(5):1029-1040.

[21]Raney, R.K., 1971. Synthetic aperture imaging radar and moving targets. IEEE Trans. Aerosp. Electron. Syst., AES-7(3):499-505.

[22]Reigber, A., Alivizatos, E., Potsis, A., et al., 2006. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation. IEE Proc.-Radar Sonar Navig., 153(3):301-310.

[23]Rosen, P.A., Hensley, S., Joughin, I.R., et al., 2000. Synthetic aperture radar interferometry. Proc. IEEE, 88(3):333-382.

[24]Zebker, H.A., Villasenor, J., 1992. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens., 30(5):950-959.

[25]Zhang, H., Hong, J., 2013. Sensitivity analysis of along-track interferometric synthetic aperture radar (ATI-SAR) in the presence of squint. IET Int. Radar Conf., p.1-5.

[26]Zhang, Y.H., 2006. Along Track Interferometry Synthetic Aperture Radar Techniques for Ground Moving Target Detection. Technical Report No. AFRL-SN-RS-TR-2005-410, Stiefvater Consultants.

[27]Zink, M., Krieger, G., Fiedler, H., et al., 2007. The TanDEM-X mission: overview and status. IEEE Int. Geoscience and Remote Sensing Symp., p.3944-3947. h ttp://dx.doi.org/10.1109/igarss.2007.4423711

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE