Full Text:   <2636>

Summary:  <1909>

CLC number: TP277

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-04-23

Cited: 0

Clicked: 7501

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yong Lei

http://orcid.org/0000-0002-6002-8852

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.5 P.615-626

http://doi.org/10.1631/FITEE.1601029


Controller area network node reliability assessment based on observable node information


Author(s):  Lei-ming Zhang, Long-hao Tang, Yong Lei

Affiliation(s):  State Key Laboratory of Fluid Power Transmission and Mechatronics, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   lmzhang@zju.edu.cn, tlh123@yeah.net, ylei@zju.edu.cn

Key Words:  Controller area network (CAN), Transmit error counter (TEC), TEC value estimation, Bayesian network, Bus-off hitting time


Lei-ming Zhang, Long-hao Tang, Yong Lei. Controller area network node reliability assessment based on observable node information[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(5): 615-626.

@article{title="Controller area network node reliability assessment based on observable node information",
author="Lei-ming Zhang, Long-hao Tang, Yong Lei",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="5",
pages="615-626",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601029"
}

%0 Journal Article
%T Controller area network node reliability assessment based on observable node information
%A Lei-ming Zhang
%A Long-hao Tang
%A Yong Lei
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 5
%P 615-626
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601029

TY - JOUR
T1 - Controller area network node reliability assessment based on observable node information
A1 - Lei-ming Zhang
A1 - Long-hao Tang
A1 - Yong Lei
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 5
SP - 615
EP - 626
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601029


Abstract: 
controller area network (CAN) based fieldbus technologies have been widely used in networked manufacturing systems. As the information channel of the system, the reliability of the network is crucial to the system throughput, product quality, and work crew safety. However, due to the inaccessibility of the nodes’ internal states, direct assessment of the reliability of CAN nodes using the nodes’ internal error counters is infeasible. In this paper, a novel CAN node reliability assessment method, which uses node’s time to bus-off as the reliability measure, is proposed. The method estimates the transmit error counter (TEC) of any node in the network based on the network error log and the information provided by the observable nodes whose error counters are accessible. First, a node TEC estimation model is established based on segmented Markov chains. It considers the sparseness of the distribution of the CAN network errors. Second, by learning the differences between the model estimates and the actual values from the observable node, a bayesian network is developed for the estimation updating mechanism of the observable nodes. Then, this estimation updating mechanism is transferred to general CAN nodes with no TEC value accessibility to update the TEC estimation. Finally, a node reliability assessment method is developed to predict the time to reach bus-off state of the nodes. Case studies are carried out to demonstrate the effectiveness of the proposed methodology. Experimental results show that the estimates using the proposed model agree well with actual observations.

基于可观测节点信息的控制器局域网节点可靠性评估

概要:基于控制器局域网的总线技术广泛应用于网络化制造系统。网络作为系统的信息通道,其可靠性对系统的吞吐量、产品质量以及工作人员的安全至关重要。然而,由于节点内部状态的不可访问性,因此使用节点内置的错误计数器值直接评估控制器局域网节点的可靠性是难以进行的。本文提出一种新颖的控制器局域网节点可靠性评估方法,该方法使用节点脱离总线时间作为可靠性测度。基于网络错误日志和错误计数器值可访问的可观测节点信息,该方法可以估计网络中节点的发送错误计数器值。首先,本文基于分段马尔科夫链建立了估计节点发送错误计数器值的模型,该模型考虑了网络中错误分布的稀疏特性。其次,通过学习可观测节点的模型估计值和实际测量值之间的偏差,建立了贝叶斯网络以表述可观测节点的模型估计值更新机制。然后,将该更新机制应用到网络中发送错误计数器值不可访问的节点,完成其模型估计值的更新。最后,建立了节点可靠性评估方法以预测节点的脱离总线时间。为表明文中方法的有效性,进行了多组实验。实验结果表明由文中方法得到的估计值与实际观测值相一致。

关键词:控制器局域网;发送错误计数器;发送错误计数器值估计;贝叶斯网络;脱离总线时间

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barranco, M., Proenza, J., Rodríguez-Navas, G., et al., 2006. An active star topology for improving fault confinement in CAN networks. IEEE Trans. Ind. Inform., 2(2):78-85.

[2]Barranco, M., Proenza, J., Almeida, L., 2011. Quantitative comparison of the error-containment capabilities of a bus and a star topology in CAN networks. IEEE Trans. Ind. Electron., 58(3):802-813.

[3]Bosch, 1991. CAN Specification Version 2.0. Robert Bosch GmbH, Postfach, Germany.

[4]Cauffriez, L., Conrard, B., Thiriet, J., et al., 2003. Fieldbuses and their influence on dependability. Proc. 20th IEEE Instrumentation and Measurement Technology Conf., p.1005-1008.

[5]Chen, J.X., Luo, F., Sun, Z.C., 2006. Reliability analysis of CAN nodes under electromagnetic interference. IEEE Int. Conf. on Vehicular Electronics and Safety, p.367-371.

[6]Farsi, M., Ratcliff, K., Barbosa, M., 1999. An overview of controller area network. Comput. Contr. Eng. J., 10(3):113-120.

[7]Gaujal, B., Navet, N., 2005. Fault confinement mechanisms on CAN: analysis and improvements. IEEE Trans. Veh. Technol., 54(3):1103-1113.

[8]Janssen, H.K., 1981. On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state. Zeitschr. Phys. B, 42(2):151-154.

[9]Kumar, M., Verma, A.K., Srividya, A., 2009. Response-time modeling of controller area network (CAN). Int. Conf. on Distributed Computing and Networking, p.163-174.

[10]Lei, Y., Djurdjanovic, D., 2010. Diagnosis of intermittent connections for DeviceNet. Chin. J. Mech. Eng., 23(5):606-612.

[11]Lei, Y., Djurdjanovic, D., Ni, J., 2010. DeviceNet reliability assessment using physical and data link layer parameters. Qual. Reliab. Eng. Int., 26(7):703-715.

[12]Lei, Y., Yuan, Y., Zhao, J.Z., 2014. Model-based detection and monitoring of the intermittent connections for CAN networks. IEEE Trans. Ind. Electron., 61(6):2912-2921.

[13]Navet, N., Song, Y.Q., 2001. Validation of in-vehicle real-time applications. Comput. Ind., 46(2):107-122.

[14]Navet, N., Song, Y.Q., Simonot, F., 2000. Worst-case deadline failure probability in real-time applications distributed over controller area network. J. Syst. Arch., 46(7):607-617.

[15]Wang, Z.Y., Guo, X.S., Yu, C.Q., 2010. Research of fault-tolerant redundancy and fault diagnosis technology based on CAN. 2nd Int. Conf. on Advanced Computer Control, p.287-291.

[16]Yomsi, P.M., Bertrand, D., Navet, N., et al., 2012. Controller area network (CAN): response time analysis with offsets. 9th IEEE Int. Workshop on Factory Communication Systems, p.43-52.

[17]Zhang, L.M., Tang, L.H., Yang, F., et al. 2015. CAN node reliability assessment using segmented discrete time Markov chains. IEEE Int. Conf. on Automation Science and Engineering, p.231-236.

[18]Zhao, J.Z., Lei, Y., 2012. Modeling for early fault detection of intermittent connections on controller area networks. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1135-1140.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE