Full Text:   <1028>

Summary:  <183>

CLC number: TN821

On-line Access: 2018-01-12

Received: 2016-04-26

Revision Accepted: 2016-08-14

Crosschecked: 2017-11-24

Cited: 0

Clicked: 2708

Citations:  Bibtex RefMan EndNote GB/T7714


Parul Dawar


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.11 P.1883-1891


Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications

Author(s):  Parul Dawar, N. S. Raghava, Asok De

Affiliation(s):  Department of Electronics and Communication Engineering, Guru Tegh Bahadur Institute of Technology, GGSIPU, Delhi 110064, India; more

Corresponding email(s):   paru.dawar@gmail.com, nsraghava@gmail com, asok.de@gmail.com

Key Words:  Ultra-wideband (UWB), Antenna, Metamaterial

Parul Dawar, N. S. Raghava, Asok De. Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1883-1891.

@article{title="Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications",
author="Parul Dawar, N. S. Raghava, Asok De",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications
%A Parul Dawar
%A N. S. Raghava
%A Asok De
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1883-1891
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601193

T1 - Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications
A1 - Parul Dawar
A1 - N. S. Raghava
A1 - Asok De
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1883
EP - 1891
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601193

We present the design and analysis of a novel modified H-shaped split ring resonator (SRR) metamaterial. It has negative permeability and permittivity characteristics with multi-band resonance for the X, Ku, and Ka frequency bands. Different configurations of the patch antenna have been analyzed with different orientations and positions of the metamaterial. Optimized performance was achieved with the new shape of the metamaterial antenna with an appreciable 9 dB gain, 77 GHz bandwidth, 100% radiation efficiency, and 65% reduction in active area. The second-order fractal metamaterial antenna achieves high miniaturization on the order of 1/21. This is truly a boon in the communications world, as a sharp beam with smaller physical dimensions is urgently required.


概要:本文设计并分析了一种改进H形裂环谐振器(split ring resonator, SRR)的新型超材料。它具有负磁导率和负介电常数特性,且在X,Ku和Ka频带内具有多频共振特性。本文就超材料方向和位置的变化对不同配置下的贴片天线进行了分析。结果表明,新型超材料天线实现了性能优化,表现为9 dB的可观增益,77 GHz的带宽,100%的辐射效率,以及有源区65%的面积缩减。二阶分形超材料天线尺寸降至1/21,从而实现了高度小型化。该研究为急需小尺寸尖波束的通信领域提供了一种解决方案。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Balanis, C.A., 1997. Antenna Theory. John Wiley & Sons, Inc., New York.

[2]Barasara, D.J., Prajapati, J.C., Dethalia, A.M., 2012. Multi-frequency fractal antenna. Int. J. Sci. Eng. Res., 3(7):1-3.

[3]Benosman, H., Hacene, N.B., 2012. Design and simulation of double “S” shaped metamaterial. Int. J. Comput. Sci., 9(2):534-537.

[4]Best, S.R., Morrow, J.D., 2002. The effectiveness of space-filling fractal geometry in lowering resonant frequency. IEEE Antennas Wirel. Propag. Lett., 1:112-115.

[5]Chen, H.S., Ran, L.X., Huangfu, J.T., et al., 2004. Left-handed materials composed of only S-shaped resonators. Phys. Rev. E, 70(5):057605.

[6]Cohen, N., 1995. Fractal antennas part-1: introduction and the fractal Quad. Commun. Quat. Summ., p.7-22.

[7]Cohen, N., 1997. Fractal antenna applications in wireless telecommunications. Proc. Electronic Industries Forum of New England, p.43-49.

[8]Dwivedi, S., Mishra, V., Kosta, Y.P., 2013. Design and Comparative analysis of a metamaterial included slotted patch antenna with a metamaterial cover over patch. Int. J. Recent Technol. Eng., 1(6):37-41.

[9]Ekmekçi, E., Turhan-Sayan, G., 2007. Investigation of effective permittivity and permeability for a novel V-shaped metamaterial using S-parameters. Proc. 5th Int. Conf. on Electrical and Electronics Engineering, p.5-9.

[10]Gianvittorio, J.P., Rahmat-Samii, Y., 2002. Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag., 44(1):20-36.

[11]Grover, F.W., 1946. Inductance Calculations: Working Formulas and Tables. Dover Publication, Inc., New York, USA.

[12]Gupta, K.C., 1988. Broadbanding Technique for Microstrip Patch Antennas: a Review. Technical Report No. 98, University of Colorado, CO.

[13]Harrington, R.F., 1960. Effect of antenna size on gain, bandwidth, and efficiency. J. Res. Nat. Bur. Stand. D: Radio Propag., 64D(1):1.

[14]Islam, S.S., Faruque, M.R.I., Islam, M.T., 2014. The design and analysis of a novel split-H-shaped metamaterial for multi-band microwave applications. Materials, 7(7): 4994-5011.

[15]Mahatthanajatuphat, C., Saleekaw, S., Akkaraekthalin, P., et al., 2009. A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WIMAX application. Prog. Electromagn. Res., 89:57-74.

[16]Mallik, A., Kundu, S., Goni, M.O., 2013. Design of a novel two-rectangular U-shaped double negative metamaterial. Int. Conf. on Informatics, Electronics & Vision, p.1-6.

[17]Nordin, M.A.W., Islam, M.T., Misran, N., 2013. Design of a compact ultrawideband metamaterial antenna based on the modified split-ring resonator and capacitively loaded strips unit cell. Prog. Electromagn. Res., 136:157-173.

[18]Paul, C.R., 2009. Inductance: Loop and Partial. Wiley-IEEE Press, New Jersey, USA.

[19]Pendry, J.B., Holden, A.J., Robbins, D.J., et al., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Technol., 47(11): 2075-2084.

[20]Pozar, D.M., 1992. Microstrip antennas. Proc. IEEE, 80(1): 79-91.

[21]Saha, C., Siddiqui, J.Y., 2011. Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators. Int. J. RF Microw. Comput. Aided Eng., 21(4):432-438.

[22]Saraswat, R.K., Kumar, M., 2016. Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Prog. Electromagn. Res. B, 65:65-80.

[23]Schantz, H., 2005. The Art and Science of Ultra-Wideband Antennas. Artech House Publishers.

[24]Singh, K., Grewal, V., Saxena, R., 2009. Fractal antennas: a novel miniaturization technique for wireless communications. Int. J. Recent Trends Eng., 2(5):172-176.

[25]Vinoy, K.J., 2002. Fractal Shaped Antenna Elements for Wide-and Multi-band Wireless Applications. PhD Thesis, The Pennsylvania State University, Pennsylvania, USA.

[26]Yaghjian, A.D., Best, S.R., 2005. Impedance, bandwidth, and Q of antennas. IEEE Trans. Antennas Propag., 53(4): 1298-1324.

[27]Ziolkowski, R.W., 2003. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propag., 51(7):1516-1529.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE