CLC number: TN821
On-line Access: 2018-01-12
Received: 2016-04-26
Revision Accepted: 2016-08-14
Crosschecked: 2017-11-24
Cited: 0
Clicked: 7783
Parul Dawar, N. S. Raghava, Asok De. Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1883-1891.
@article{title="Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications",
author="Parul Dawar, N. S. Raghava, Asok De",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="11",
pages="1883-1891",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601193"
}
%0 Journal Article
%T Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications
%A Parul Dawar
%A N. S. Raghava
%A Asok De
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1883-1891
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601193
TY - JOUR
T1 - Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications
A1 - Parul Dawar
A1 - N. S. Raghava
A1 - Asok De
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1883
EP - 1891
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601193
Abstract: We present the design and analysis of a novel modified H-shaped split ring resonator (SRR) metamaterial. It has negative permeability and permittivity characteristics with multi-band resonance for the X, Ku, and Ka frequency bands. Different configurations of the patch antenna have been analyzed with different orientations and positions of the metamaterial. Optimized performance was achieved with the new shape of the metamaterial antenna with an appreciable 9 dB gain, 77 GHz bandwidth, 100% radiation efficiency, and 65% reduction in active area. The second-order fractal metamaterial antenna achieves high miniaturization on the order of 1/21. This is truly a boon in the communications world, as a sharp beam with smaller physical dimensions is urgently required.
[1]Balanis, C.A., 1997. Antenna Theory. John Wiley & Sons, Inc., New York.
[2]Barasara, D.J., Prajapati, J.C., Dethalia, A.M., 2012. Multi-frequency fractal antenna. Int. J. Sci. Eng. Res., 3(7):1-3.
[3]Benosman, H., Hacene, N.B., 2012. Design and simulation of double “S” shaped metamaterial. Int. J. Comput. Sci., 9(2):534-537.
[4]Best, S.R., Morrow, J.D., 2002. The effectiveness of space-filling fractal geometry in lowering resonant frequency. IEEE Antennas Wirel. Propag. Lett., 1:112-115.
[5]Chen, H.S., Ran, L.X., Huangfu, J.T., et al., 2004. Left-handed materials composed of only S-shaped resonators. Phys. Rev. E, 70(5):057605.
[6]Cohen, N., 1995. Fractal antennas part-1: introduction and the fractal Quad. Commun. Quat. Summ., p.7-22.
[7]Cohen, N., 1997. Fractal antenna applications in wireless telecommunications. Proc. Electronic Industries Forum of New England, p.43-49.
[8]Dwivedi, S., Mishra, V., Kosta, Y.P., 2013. Design and Comparative analysis of a metamaterial included slotted patch antenna with a metamaterial cover over patch. Int. J. Recent Technol. Eng., 1(6):37-41.
[9]Ekmekçi, E., Turhan-Sayan, G., 2007. Investigation of effective permittivity and permeability for a novel V-shaped metamaterial using S-parameters. Proc. 5th Int. Conf. on Electrical and Electronics Engineering, p.5-9.
[10]Gianvittorio, J.P., Rahmat-Samii, Y., 2002. Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag., 44(1):20-36.
[11]Grover, F.W., 1946. Inductance Calculations: Working Formulas and Tables. Dover Publication, Inc., New York, USA.
[12]Gupta, K.C., 1988. Broadbanding Technique for Microstrip Patch Antennas: a Review. Technical Report No. 98, University of Colorado, CO.
[13]Harrington, R.F., 1960. Effect of antenna size on gain, bandwidth, and efficiency. J. Res. Nat. Bur. Stand. D: Radio Propag., 64D(1):1.
[14]Islam, S.S., Faruque, M.R.I., Islam, M.T., 2014. The design and analysis of a novel split-H-shaped metamaterial for multi-band microwave applications. Materials, 7(7): 4994-5011.
[15]Mahatthanajatuphat, C., Saleekaw, S., Akkaraekthalin, P., et al., 2009. A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WIMAX application. Prog. Electromagn. Res., 89:57-74.
[16]Mallik, A., Kundu, S., Goni, M.O., 2013. Design of a novel two-rectangular U-shaped double negative metamaterial. Int. Conf. on Informatics, Electronics & Vision, p.1-6.
[17]Nordin, M.A.W., Islam, M.T., Misran, N., 2013. Design of a compact ultrawideband metamaterial antenna based on the modified split-ring resonator and capacitively loaded strips unit cell. Prog. Electromagn. Res., 136:157-173.
[18]Paul, C.R., 2009. Inductance: Loop and Partial. Wiley-IEEE Press, New Jersey, USA.
[19]Pendry, J.B., Holden, A.J., Robbins, D.J., et al., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Technol., 47(11): 2075-2084.
[20]Pozar, D.M., 1992. Microstrip antennas. Proc. IEEE, 80(1): 79-91.
[21]Saha, C., Siddiqui, J.Y., 2011. Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators. Int. J. RF Microw. Comput. Aided Eng., 21(4):432-438.
[22]Saraswat, R.K., Kumar, M., 2016. Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Prog. Electromagn. Res. B, 65:65-80.
[23]Schantz, H., 2005. The Art and Science of Ultra-Wideband Antennas. Artech House Publishers.
[24]Singh, K., Grewal, V., Saxena, R., 2009. Fractal antennas: a novel miniaturization technique for wireless communications. Int. J. Recent Trends Eng., 2(5):172-176.
[25]Vinoy, K.J., 2002. Fractal Shaped Antenna Elements for Wide-and Multi-band Wireless Applications. PhD Thesis, The Pennsylvania State University, Pennsylvania, USA.
[26]Yaghjian, A.D., Best, S.R., 2005. Impedance, bandwidth, and Q of antennas. IEEE Trans. Antennas Propag., 53(4): 1298-1324.
[27]Ziolkowski, R.W., 2003. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propag., 51(7):1516-1529.
Open peer comments: Debate/Discuss/Question/Opinion
<1>