Full Text:   <431>

Summary:  <124>

CLC number: TN82

On-line Access: 2020-02-27

Received: 2019-08-30

Revision Accepted: 2020-01-05

Crosschecked: 2020-01-16

Cited: 0

Clicked: 597

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hai-yang Xia

https://orcid.org/0000-0003-0130-7605

Lian-ming Li

https://orcid.org/0000-0003-1873-4806

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.1 P.174-181

http://doi.org/10.1631/FITEE.1900453


Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process


Author(s):  Hai-yang Xia, Jin-can Hu, Tao Zhang, Lian-ming Li, Fu-chun Zheng

Affiliation(s):  National Mobile Communications Research Laboratory, Department of Radio Engineering, School of Information Science and Engineering, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   Lianming.LI@seu.edu.cn, fzheng@ieee.org

Key Words:  60 GHz, Antenna-in-package (AiP), Coplanar-waveguide-fed (CPW-fed) ring resonators, Glass integrated passive device (GIPD), Metasurface antenna, Miniaturized antenna


Hai-yang Xia, Jin-can Hu, Tao Zhang, Lian-ming Li, Fu-chun Zheng. Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 174-181.

@article{title="Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process",
author="Hai-yang Xia, Jin-can Hu, Tao Zhang, Lian-ming Li, Fu-chun Zheng",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="174-181",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900453"
}

%0 Journal Article
%T Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process
%A Hai-yang Xia
%A Jin-can Hu
%A Tao Zhang
%A Lian-ming Li
%A Fu-chun Zheng
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 174-181
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900453

TY - JOUR
T1 - Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process
A1 - Hai-yang Xia
A1 - Jin-can Hu
A1 - Tao Zhang
A1 - Lian-ming Li
A1 - Fu-chun Zheng
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 174
EP - 181
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900453


Abstract: 
We propose a miniaturized wideband metasurface antenna for 60-GHz antenna-in-package applications. With the glass integrated passive device manufacturing technology, we introduce a coplanar-waveguide-fed (CPW-fed) ring resonator to characterize the material properties of the glass substrate. The proposed antenna is designed on a high dielectric constant glass substrate to achieve antenna miniaturization. Because of the existence of gaps between patch units compared with the conventional rectangular patch in the TM10 mode, the radiation aperture of this proposed antenna is reduced. Located right above the center feeding CPW-fed bow-tie slot, the metasurface patch is realized, supporting the TM10 mode and antiphase TM20 mode simultaneously to improve the bandwidth performance. Using a probe-based antenna measurement setup, the antenna prototype is measured, demonstrating a 10-dB impedance bandwidth from 53.3 to 67 GHz. At 60 GHz, the antenna gain measured is about 5 dBi in the boresight direction with a compact radiation aperture of 0.31λ0×0.31λ0 and a thickness of 0.06λ0.

基于玻璃集成无源器件工艺的60-GHz小型化宽带超表面天线

夏海洋1,2,胡金灿1,2,张涛2,3,李连鸣1,2,郑福春1,2
1东南大学信息科学与工程学院移动通信国家重点实验室,中国南京市,210096
2紫金山实验室,中国南京市,211111
3西安电子科技大学微电子学院,中国西安市,710071

摘要:提出一种面向封装天线应用的60-GHz小型化宽带超表面天线。基于玻璃集成无源器件制造技术,采用共面波导馈电环形谐振器表征玻璃基板的材料特性。该天线于高介电常数玻璃基板上设计以实现天线小型化。在TM10模式下,贴片单元之间的间隙使该天线贴片辐射孔径得以减小。该天线在结构上采用共面波导馈电,进而激励蝶形缝隙,最终耦合激励位于天线上表面的超表面贴片。该天线可同时支持TM10模和反相TM20模,从而提升带宽性能。经过设计、优化及加工,该天线的辐射贴片尺寸为0.31λ0×0.31λ0,厚度为0.06λ0。采用基于探针结构的天线测量装置完成该天线测试,测试结果显示天线带宽为53.3—67GHz。在60 GHz频点处,该天线增益测量值约为5 dBi。

关键词:60 GHz;封装天线;共面波导馈电环形谐振器;玻璃集成无源器件;超表面天线;小型化天线

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Balanis CA, 2016. Antenna Theory: Analysis and Design. John Wiley & Sons, Hoboken.

[2]Biglarbegian B, Nezhad-Ahmadi MR, Safavi-Naeini S, 2011. Integrated microstrip-fed slot array antenna for emerging wireless application in IPD technology. Proc IEEE MTT-S Int Microwave Workshop Series on Millimeter Wave Integration Technologies, p.41-44.

[3]Calvez C, Person C, Coupez JP, et al., 2011. Miniaturized hybrid antenna combining Si and IPD™ technologies for 60 GHz WLAN applications. Proc IEEE Int Symp on Antennas and Propagation, p.1357-1359.

[4]Chang CC, Lin CC, Cheng WK, 2015. Fully integrated 60 GHz switched-beam phased antenna array in glass-IPD technology. Electron Lett, 51(11):804-806.

[5]Cheng WK, Chang CC, Tsai TH, 2018. Design of 60 GHz circular-polarization antenna array in glass-IPD for monostatic radar MMICs. Proc IEEE Int Symp on Radio- Frequency Integration Technology, p.1-3.

[6]da Silva CRCM, Kosloff J, Chen C, et al., 2018. Beamforming training for IEEE 802.11ay millimeter wave systems. Proc Information Theory and Applications Workshop, p.1-9.

[7]Ghasempour Y, da Silva CRCM, Cordeiro C, et al., 2017. IEEE 802.11ay: next-generation 60 GHz communication for 100 Gb/s Wi-Fi. IEEE Commun Mag, 55(12):186-192.

[8]Hosono R, Uemichi Y, Nukaga O, et al., 2016. 70-GHz band corporate-feed array antenna with multi-layered glass substrate. Proc IEEE Int Symp on Antennas and Propagation, p.799-800.

[9]Huang JF, Kuo CW, 1998. CPW-fed bow-tie slot antenna. Microw Opt Technol Lett, 19(5):358-360.

[10]Lantéri J, Dussopt L, Pilard R, et al., 2010. 60 GHz antennas in HTCC and glass technology. Proc the 4th European Conf on Antennas and Propagation, p.1-4.

[11]Liu W, Chen ZN, Qing XM, 2015. Metamaterial-based low- profile broadband aperture-coupled grid-slotted patch antenna. IEEE Trans Antenn Propag, 63(7):3325-3329.

[12]Liu W, Chen ZN, Qing XM, et al., 2017. Miniaturized wideband metasurface antennas. IEEE Trans Antenn Propag, 65(12):7345-7349.

[13]Tavakol V, Qi F, Ocket I, et al., 2010. CPW-fed slot bow-tie antenna at 90 GHz for a mm-wave detector matrix. Proc 4th European Conf on Antennas and Propagation, p.1-3.

[14]Thompson DC, Tantot O, Jallageas H, et al., 2004. Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz. IEEE Trans Microw Theory Techn, 52(4):1343-1352.

[15]Wong KL, 2004. Compact and Broadband Microstrip Antennas. John Wiley & Sons, New York.

[16]Zhang YP, Liu DX, 2009. Antenna-on-chip and antenna-in- package solutions to highly integrated millimeter-wave devices for wireless communications. IEEE Trans Antenn Propag, 57(10):2830-2841.

[17]Zou G, Gronqvist H, Starsk JP, et al., 2002. Characterization of liquid crystal polymer for high frequency system-in-a- package applications. IEEE Trans Adv Packag, 25(4): 503-508.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE