CLC number: TN828.5
On-line Access: 2020-02-27
Received: 2019-09-16
Revision Accepted: 2019-12-22
Crosschecked: 2020-01-18
Cited: 0
Clicked: 6601
Citations: Bibtex RefMan EndNote GB/T7714
Gang Zhao, Yong-chang Jiao, Guan-tao Chen. Optimal design of a large dual-polarization microstrip reflectarray with China-coverage patterns for satellite communications[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 159-173.
@article{title="Optimal design of a large dual-polarization microstrip reflectarray with China-coverage patterns for satellite communications",
author="Gang Zhao, Yong-chang Jiao, Guan-tao Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="159-173",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900496"
}
%0 Journal Article
%T Optimal design of a large dual-polarization microstrip reflectarray with China-coverage patterns for satellite communications
%A Gang Zhao
%A Yong-chang Jiao
%A Guan-tao Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 159-173
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900496
TY - JOUR
T1 - Optimal design of a large dual-polarization microstrip reflectarray with China-coverage patterns for satellite communications
A1 - Gang Zhao
A1 - Yong-chang Jiao
A1 - Guan-tao Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 159
EP - 173
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900496
Abstract: A large dual-polarization microstrip reflectarray with China-coverage patterns in two operating bands is designed. To sufficiently compensate for the spatial phase delay differences in two operating bands separately, a three-layer rectangular patch element is addressed, which is suitable for the large dual-polarization reflectarray. Due to the complexly shaped areas and high gain requirements, there are more than 25 000 elements in the reflectarray, making it difficult to design, due to more than 150 000 optimization variables. First, the discrete fast Fourier transform (DFFT) and the inverse DFFT are used to establish a one-to-one relationship between the aperture distribution and the far field, which lays a foundation for optimizing the shaped-beam reflectarray. The intersection approach, based on the alternating projection, is used to obtain the desired reflection phases of all the elements at some sample frequencies, and a new method for producing a suitable initial solution is proposed to avoid undesired local minima. To validate the design method, a dual-polarization shaped-beam reflectarray with 7569 elements is fabricated and measured. The measurement results are in reasonable agreement with the simulation ones. Then, for the large broadband reflectarray with the minimum differential spatial phase delays in the operating band, an approach for determining the optimal position of the feed is discussed. To simultaneously find optimal dimensions of each element in two orthogonal directions, we establish a new optimization model, which is solved by the regular polyhedron method. Finally, a dual-band dual-polarization microstrip reflectarray with 25 305 elements is designed to cover the continent of China. Simulation results show that patterns of the reflectarray meet the China-coverage requirements in two operating bands, and that the proposed optimization method for designing large reflectarrays with complexly shaped patterns is reliable and efficient.
[1]Arrebola M, Encinar JA, Barba M, 2008. Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna. IEEE Trans Antenn Propag, 56(6):1518-1527.
[2]Bucci O, Franceschetti G, 1990. Intersection approach to array pattern synthesis. IEE Proc H Microw Antenn Propag, 137(6):349-357.
[3]Carrasco E, Barba M, Encinar JA, et al., 2013. Design, manufacture and test of a low-cost shaped-beam reflectarray using a single layer of varying-sized printed dipoles. IEEE Trans Antenn Propag, 61(6):3077-3085.
[4]Chaharmir MR, Shaker J, 2008. Broadband reflectarray with combination of cross and rectangle loop elements. Electron Lett, 44(11):658-659.
[5]Chaharmir MR, Shaker J, Legay H, 2009. Broadband design of a single layer large reflectarray using multi cross loop elements. IEEE Trans Antenn Propag, 57(10):3363- 3366.
[6]Clark RH, Brown J, 1980. Diffraction Theory and Antennas. Halsted Press, New York, USA.
[7]Encinar JA, Zornoza JA, 2004. Three-layer printed reflectarrays for contoured beam space applications. IEEE Trans Antenn Propag, 52(5):1138-1148.
[8]Encinar JA, Datashvili LS, Zornoza JA, et al., 2006. Dual- polarization dual-coverage reflectarray for space applications. IEEE Trans Antenn Propag, 54(10):2827- 2837.
[9]Encinar JA, Arrebola M, Fuente LDL, et al., 2011. A transmit- receive reflectarray antenna for direct broadcast satellite applications. IEEE Trans Antenn Propag, 59(9):3255- 3264.
[10]Jiao YC, Wei WY, Huang LW, et al., 1993. A new low-side-lobe pattern synthesis technique for conformal arrays. IEEE Trans Antenn Propag, 41(6):824-831.
[11]Pozar DM, 2007. Wideband reflectarrays using artificial impedance surfaces. Electron Lett, 43(3):148-149.
[12]Pozar DM, Targonski SD, Pokuls R, 1999. A shaped-beam microstrip patch reflectarray. IEEE Trans Antenn Propag, 47(7):1167-1173.
[13]Prado DR, Arrebola M, Pino MR, et al., 2017. Efficient crosspolar optimization of shaped-beam dual-polarized reflectarrays using full-wave analysis for the antenna element characterization. IEEE Trans Antenn Propag, 65(2):623-635.
[14]Rahmat-Samii Y, Michielssen E, 1999. Electromagnetic optimization by genetic algorithms. Microw J, 42(11): 232-232.
[15]Rahmat-Samii Y, Cramer P, Woo K, et al., 1981. Realizable feed-element patterns for multibeam reflector antenna analysis. IEEE Trans Antenn Propag, 29(6):961-963.
[16]Robinson J, Rahmat-Samii Y, 2004. Particle swarm optimization in electromagnetics. IEEE Trans Antenn Propag, 52(2):397-407.
[17]Vacchione JD, 1990. Techniques for Analyzing Planar, Periodic Frequency Selective Surface Systems. PhD Thesis, University of Illinois at Urbana-Champaign, Illinois, USA.
[18]Wu GB, Qu SW, Wang YX, et al., 2018. Nonuniform FSS-backed reflectarray with synthesized phase and amplitude distribution. IEEE Trans Antenn Propag, 66(12): 6883-6892.
[19]Yu A, Yang F, Elsherbeni AZ, et al., 2009. A single layer broadband circularly polarized reflectarray based on the element rotation technique. IEEE Antennas and Propagation Society Int Symp, p.1-4.
[20]Zhang L, Cui Z, Jiao YC, et al., 2009. Broadband patch antenna design using differential evolution algorithm. Microw Opt Technol Lett, 51(7):1692-1695.
[21]Zhou M, Sørensen SB, Kim OS, et al., 2013. Direct optimization of printed reflectarrays for contoured beam satellite antenna applications. IEEE Trans Antenn Propag, 61(4): 1995-2004.
[22]Zhou M, Sørensen SB, Kim OS, et al., 2014. The generalized direct optimization technique for printed reflectarrays. IEEE Trans Antenn Propag, 62(4):1690-1700.
[23]Zhou M, Borries O, Jørgensen E, 2015. Design and optimization of a single-layer planar transmit-receive contoured beam reflectarray with enhanced performance. IEEE Trans Antenn Propag, 63(4):1247-1254.
Open peer comments: Debate/Discuss/Question/Opinion
<1>