Full Text:   <787>

Summary:  <182>

CLC number: O441

On-line Access: 2024-01-26

Received: 2022-10-15

Revision Accepted: 2023-02-02

Crosschecked: 2024-01-26

Cited: 0

Clicked: 1077

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lingjun YANG

https://orcid.org/0000-0002-5964-4308

Sheng SUN

https://orcid.org/0000-0003-2684-9662

Wei E.I. SHA

https://orcid.org/0000-0002-7431-8121

Long LI

https://orcid.org/0000-0003-0472-7314

Jun HU

https://orcid.org/0000-0002-4565-3000

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.12 P.1776-1790

http://doi.org/10.1631/FITEE.2200471


Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization


Author(s):  Lingjun YANG, Sheng SUN, Wei E.I. SHA, Long LI, Jun HU

Affiliation(s):  School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; more

Corresponding email(s):   sunsheng@ieee.org

Key Words:  Orbital angular momentum (OAM), Geometric phase, Multi-feed metasurface, Spin-decoupled metasurface, Vortex beam communication


Lingjun YANG, Sheng SUN, Wei E.I. SHA, Long LI, Jun HU. Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1776-1790.

@article{title="Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization",
author="Lingjun YANG, Sheng SUN, Wei E.I. SHA, Long LI, Jun HU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="12",
pages="1776-1790",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200471"
}

%0 Journal Article
%T Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization
%A Lingjun YANG
%A Sheng SUN
%A Wei E.I. SHA
%A Long LI
%A Jun HU
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 12
%P 1776-1790
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200471

TY - JOUR
T1 - Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization
A1 - Lingjun YANG
A1 - Sheng SUN
A1 - Wei E.I. SHA
A1 - Long LI
A1 - Jun HU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 12
SP - 1776
EP - 1790
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200471


Abstract: 
The wavefront control of spin or orbital angular momentum (OAM) is widely applied in the optical and radio fields. However, most passive metasurfaces provide limited manipulations, such as the spin-locked wavefront, a static OAM combination, or an uncontrollable OAM energy distribution. We propose a reflection-type multi-feed metasurface to independently generate multi-mode OAM beams with dynamically switchable OAM combinations and spin states, while simultaneously, the energy distribution of carrying OAM modes is controllable. Specifically, four elements are proposed to overcome the spin-locked phase limitation by combining propagation and geometric phases. The robustness of these elements is analyzed. By involving the amplitude term and multi-feed technology in the design process, the proposed metasurface can generate OAM beams with a controllable energy distribution over modes and switchable mode combinations. OAM-based radio communication with four independent channels is experimentally demonstrated at 14 GHz by employing a pair of the proposed metasurfaces. The powers of different channels are adjustable by the provided amplitude term, and the maximum crosstalk is -9 dB, proving the effectiveness and practicability of the proposed method.

用于极化和轨道角动量复用通信的多馈多模超表面

阳棂均1,孙胜1,沙威2,李龙3,胡俊1
1电子科技大学电子科学与工程学院,中国成都市,611731
2浙江大学信息与电子工程学院,中国杭州市,310027
3西安电子科技大学电子工程学院,中国西安市,710071
摘要:携带自旋和轨道角动量(OAM)的波束在光学和无线电领域中被广泛应用。然而,大多数无源波束调控装置只提供有限操作,例如自旋(极化)锁定的波前、静态的OAM模式组合或不可控制的OAM能量分配。本文提出一种多馈源反射型超表面装置,可以在动态切换OAM模式和极化组合的同时,对各模式间的能量精确分配。具体而言,提出四个结合传播和几何相位的超表面单元来克服自旋锁定相位限制,并分析这些单元的鲁棒性。通过引入振幅项和多馈源技术,所提超表面可以生成具有可控能量和可变模式的OAM电磁波束。使用所提超表面装置,搭建了工作在14 GHz的基于OAM模式和圆极化复用的无线电通信系统。系统中最大串扰是−9 dB,证明了所提方法的有效性和实用性。

关键词:轨道角动量(OAM);几何相位;多馈源超表面;自旋解耦超表面;涡旋波通讯

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akram MR, Ding GW, Chen K, et al., 2020. Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv Mater, 32(12):1907308.

[2]Akram Z, Li XP, Qi ZH, et al., 2019. Broadband high-order OAM reflective metasurface with high mode purity using subwavelength element and circular aperture. IEEE Access, 7:71963-71971.

[3]Allen L, Beijersbergen MW, Spreeuw RJC, et al., 1992. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 45(11):8185-8189.

[4]Arrebola M, Encinar JA, Barba M, 2008. Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna. IEEE Trans Antenn Propag, 56(6):1518-1527.

[5]Bai XD, Kong FW, Sun YT, et al., 2020. High-efficiency transmissive programmable metasurface for multimode OAM generation. Adv Opt Mater, 8(17):2000570.

[6]Bao YJ, Ni JC, Qiu CW, 2020. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv Mater, 32(6):1905659.

[7]Barbuto M, Bilotti F, Toscano A, 2017. Patch antenna generating structured fields with a Möbius polarization state. IEEE Antenn Wirel Propag Lett, 16:1345-1348.

[8]Barbuto M, Alù A, Bilotti F, et al., 2021. Dual-circularly polarized topological patch antenna with pattern diversity. IEEE Access, 9:48769-48776.

[9]Berry MV, 1984. Quantal phase factors accompanying adiabatic changes. Proc Royal Soc A Math Phys Sci, 392(1802):45-57.

[10]Bozinovic N, Yue Y, Ren YX, et al., 2013. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340(6140):1545-1548.

[11]Chen MLN, Jiang LJ, Sha WEI, 2017. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies. IEEE Trans Antenn Propag, 65(1):396-400.

[12]Chen MLN, Jiang LJ, Sha WEI, 2019. Quasi-continuous metasurfaces for orbital angular momentum generation. IEEE Antenn Wirel Propag Lett, 18(3):477-481.

[13]Chen YL, Zheng SL, Li Y, et al., 2016. A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam. IEEE Antenn Wirel Propag Lett, 15:1156-1158.

[14]Devlin RC, Ambrosio A, Rubin NA, et al., 2017. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358(6365):896-901.

[15]Ding GW, Chen K, Zhang N, et al., 2022. Independent wavefront tailoring in full polarization channels by helicity-decoupled metasurface. Ann Phys, 534(4):2100546.

[16]Edfors O, Johansson AJ, 2012. Is orbital angular momentum (OAM) based radio communication an unexploited area?IEEE Trans Antenn Propag, 60(2):1126-1131.

[17]Feng Q, Kong XD, Shan MM, et al., 2022. Multi-orbital-angular-momentum-mode vortex wave multiplexing and demultiplexing with shared-aperture reflective metasurfaces. Phys Rev Appl, 17(3):034017.

[18]Guo WL, Wang GM, Ji WY, et al., 2020a. Broadband spin-decoupled metasurface for dual-circularly polarized reflector antenna design. IEEE Trans Antenn Propag, 68(5):3534-3543.

[19]Guo WL, Wang GM, Luo XY, et al., 2020b. Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring. Ann Phys, 532(3):1900472.

[20]Han Y, Grier DG, 2003. Erratum: vortex rings in a constant electric field. Nature, 424(6948):510.

[21]Jiang X, Liang B, Cheng JC, et al., 2018. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing. Adv Mater, 30(18):1800257.

[22]Jiang ZH, Kang L, Yue TW, et al., 2020. A single noninterleaved metasurface for high-capacity and flexible mode multiplexing of higher-order Poincaré sphere beams. Adv Mater, 32(6):1903983.

[23]Kang L, Li H, Zhou JZ, et al., 2019. A mode-reconfigurable orbital angular momentum antenna with simplified feeding scheme. IEEE Trans Antenn Propag, 67(7):4866-4871.

[24]Li LL, Cui TJ, Ji W, et al., 2017. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun, 8(1):197.

[25]Li SQ, Li XY, Zhang L, et al., 2020. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface. Adv Opt Mater, 8(8):1901666.

[26]Lin MT, Gao Y, Liu PG, et al., 2017. Theoretical analyses and design of circular array to generate orbital angular momentum. IEEE Trans Antenn Propag, 65(7):3510-3519.

[27]Liu HQ, Teng CX, Yang HY, et al., 2018. Proposed phase plate for superimposed orbital angular momentum state generation. Opt Expr, 26:14792-14799.

[28]Liu K, Liu HY, Qin YL, et al., 2016. Generation of OAM beams using phased array in the microwave band. IEEE Trans Antenn Propag, 64(9):3850-3857.

[29]Liu K, Cheng YQ, Gao Y, et al., 2017. Super-resolution radar imaging based on experimental OAM beams. Appl Phys Lett, 110(16):164102.

[30]Luo WJ, Sun SL, Xu HX, et al., 2017. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Phys Rev Appl, 7(4):044033.

[31]Ma LN, Chen C, Zhou LY, et al., 2019. Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity. Appl Phys Lett, 114(8):081603.

[32]Menzel C, Rockstuhl C, Lederer F, 2010. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A, 82(5):053811.

[33]Mohammadi SM, Daldorff LKS, Bergman JES, et al., 2010. Orbital angular momentum in radio—a system study. IEEE Trans Antenn Propag, 58(2):565-572.

[34]Mueller JPB, Rubin NA, Devlin RC, et al., 2017. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118(11):113901.

[35]Pitilakis A, Seckel M, Tasolamprou AC, et al., et al., 2022. Multifunctional metasurface architecture for amplitude, polarization and wave-front control. Phys Rev Appl, 17(6):064060.

[36]Pogorzelski RJ, 2004. Phased arrays based on oscillators coupled on triangular and hexagonal lattices. IEEE Trans Antenn Propag, 52(3):790-800.

[37]Shuang Y, Zhao HT, Ji W, et al., 2020. Programmable high-order OAM-carrying beams for direct-modulation wireless communications. IEEE J Emerg Sel Top Circ Syst, 10(1):29-37.

[38]Sievenpiper D, Zhang LJ, Broas RFJ, et al., 1999. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theory Techn, 47(11):2059-2074.

[39]Sroor H, Huang YW, Sephton B, et al., 2020. High-purity orbital angular momentum states from a visible metasurface laser. Nat Photon, 14(8):498-503.

[40]Sun SL, He Q, Xiao SY, et al., 2012. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater, 11(5):426-431.

[41]Tamagnone M, Craeye C, Perruisseau-Carrier J, 2012. Comment on ‚encoding many channels on the same frequency through radio vorticity: first experimental test’. New J Phys, 14:118001.

[42]Tang SW, Cai T, Liang JG, et al., 2019. High-efficiency transparent vortex beam generator based on ultrathin Pancharatnam–Berry metasurfaces. Opt Expr, 27(2):1816-1824.

[43]Thidé B, Then H, Sjöholm J, et al., 2007. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett, 99(8):087701.

[44]Tian HW, Jiang WX, Li X, et al., 2019. Generation of high-order orbital angular momentum beams and split beams simultaneously by employing anisotropic coding metasurfaces. J Opt, 21(6):065103.

[45]Uribe-Patarroyo N, Alvarez-Herrero A, López Ariste A, et al., 2011. Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations. A&A, 526:A56.

[46]Vellucci S, Longhi M, Monti A, et al., 2022. Antenna pattern shaping through functionalized metasurface coatings. Proc Sixteenth Int Congress on Artificial Materials for Novel Wave Phenomena, p.466-468.

[47]Wang J, Yang JY, Fazal IM, et al., 2012. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon, 6(7):488-496.

[48]Wang ZX, Wu JW, Wu LW, et al., 2021. High efficiency polarization-encoded holograms with ultrathin bilayer spin-decoupled information metasurfaces. Adv Opt Mater, 9(5):2001609.

[49]Xu HX, Liu HW, Ling XH, et al., 2017. Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface. IEEE Trans Antenn Propag, 65(12):7378-7382.

[50]Xu HX, Hu GW, Jiang MH, et al., 2020. Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface. Adv Mater Technol, 5(1):1900710.

[51]Yan Y, Xie GD, Lavery MPJ, et al., 2014. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun, 5:4876.

[52]Yang LJ, Sun S, Sha WEI, 2020. Ultrawideband reflection-type metasurface for generating integer and fractional orbital angular momentum. IEEE Trans Antenn Propag, 68(3):2166-2175.

[53]Yang LJ, Sun S, Sha WEI, 2021. Manipulation of orbital angular momentum spectrum using shape-tailored metasurfaces. Adv Opt Mater, 9(2):2001711.

[54]Yang LJ, Sun S, Sha WEI, et al., 2022. Arbitrary vortex beam synthesis with donut-shaped metasurface. IEEE Trans Antenn Propag, 70(1):573-584.

[55]Yang LJ, Sun S, Sha WEI, et al., 2023. Bifunctional integration performed by a broadband high-efficiency spin-decoupled metasurface. Adv Opt Mater, 11(2):2201955.

[56]Yu NF, Genevet P, Kats MA, et al., 2011. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334(6054):333-337.

[57]Yu SX, Li L, Shi GM, et al., 2016a. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl Phys Lett, 108(12):121903.

[58]Yu SX, Li L, Shi GM, et al., 2016b. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl Phys Lett, 108(24):241901.

[59]Yuan SSA, Wu J, Chen MLN, et al., 2021. Approaching the fundamental limit of orbital-angular-momentum multiplexing through a hologram metasurface. Phys Rev Appl, 16(6):064042.

[60]Yuan YY, Sun S, Chen Y, et al., 2020. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Adv Sci, 7(18):2001437.

[61]Zhang K, Yuan YY, Zhang DW, et al., 2018. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt Expr, 26(2):1351-1360.

[62]Zhang S, Huo PC, Zhu WQ, et al., 2020. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface. Laser Photon Rev, 14(9):2000062.

[63]Zhang WT, Zheng SL, Hui XN, et al., 2017. Four-OAM-mode antenna with traveling-wave ring-slot structure. IEEE Antenn Wirel Propag Lett, 16:194-197.

[64]Zhang XG, Jiang WX, Jiang HL, et al., 2020. An optically driven digital metasurface for programming electromagnetic functions. Nat Electron, 3(3):165-171.

[65]Zhang ZF, Zheng SL, Jin XF, et al., 2017. Generation of plane spiral OAM waves using traveling-wave circular slot antenna. IEEE Antenn Wirel Propag Lett, 16:8-11.

[66]Zhu L, Wang J, 2015. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Opt Expr, 23(20):26221-26233.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE