Full Text:   <1685>

Summary:  <265>

Suppl. Mater.: 

CLC number: TN820

On-line Access: 2024-01-26

Received: 2023-03-01

Revision Accepted: 2024-01-26

Crosschecked: 2023-07-04

Cited: 0

Clicked: 1345

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tie-jun Cui

https://orcid.org/0000-0002-5862-1497

Junwei WU

https://orcid.org/0000-0001-9764-1178

Qiang CHENG

https://orcid.org/0000-0002-2442-8357

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.12 P.1708-1716

http://doi.org/10.1631/FITEE.2300146


Realizing complex beams via amplitude-phase digital coding metasurfaces and semidefinite relaxation optimization


Author(s):  Junwei WU, Qiong HUA, Hui XU, Hanqing YANG, Zhengxing WANG, Qiang CHENG, Tie Jun CUI

Affiliation(s):  State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   qiangcheng@seu.edu.cn, tjcui@seu.edu.cn

Key Words:  Antenna beams, Amplitude-phase coding metasurface, Far-field synthesis, Semidefinite relaxation


Junwei WU, Qiong HUA, Hui XU, Hanqing YANG, Zhengxing WANG, Qiang CHENG, Tie Jun CUI. Realizing complex beams via amplitude-phase digital coding metasurfaces and semidefinite relaxation optimization[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1708-1716.

@article{title="Realizing complex beams via amplitude-phase digital coding metasurfaces and semidefinite relaxation optimization",
author="Junwei WU, Qiong HUA, Hui XU, Hanqing YANG, Zhengxing WANG, Qiang CHENG, Tie Jun CUI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="12",
pages="1708-1716",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300146"
}

%0 Journal Article
%T Realizing complex beams via amplitude-phase digital coding metasurfaces and semidefinite relaxation optimization
%A Junwei WU
%A Qiong HUA
%A Hui XU
%A Hanqing YANG
%A Zhengxing WANG
%A Qiang CHENG
%A Tie Jun CUI
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 12
%P 1708-1716
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300146

TY - JOUR
T1 - Realizing complex beams via amplitude-phase digital coding metasurfaces and semidefinite relaxation optimization
A1 - Junwei WU
A1 - Qiong HUA
A1 - Hui XU
A1 - Hanqing YANG
A1 - Zhengxing WANG
A1 - Qiang CHENG
A1 - Tie Jun CUI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 12
SP - 1708
EP - 1716
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300146


Abstract: 
Complex beams play important roles in wireless communications, radar, and satellites, and have attracted great interest in recent years. In light of this background, we present a fast and efficient approach to realize complex beams by using semidefinite relaxation (SDR) optimization and amplitude-phase digital coding metasurfaces. As the application examples of this approach, complex beam patterns with cosecant, flat-top, and double shapes are designed and verified using full-wave simulations and experimental measurements. The results show excellent main lobes and low-level side lobes and demonstrate the effectiveness of the approach. Compared with previous works, this approach can solve the complex beam-forming problem more rapidly and effectively. Therefore, the approach will be of great significance in the design of beam-forming systems in wireless applications.

利用幅相数字编码超表面和半定松弛实现复杂波束

武军伟1,2,3,华琼1,徐辉1,杨汉卿1,汪正兴1,程强1,崔铁军1,2,3
1东南大学毫米波全国重点实验室,中国南京市,210096
2鹏城实验室,中国深圳市,518055
3琶洲实验室(黄埔),中国广州市,510555
摘要:复杂波束在无线通信、雷达和卫星等领域发挥着重要作用,近年来引起人们的极大兴趣。在此背景下,提出一种利用半定松弛优化和幅相数字编码超表面实现复杂波束的快速有效方法。作为该方法的应用实例,设计了具有余割、平顶和双峰形状的复杂波束,并通过全波模拟和实验测量进行了验证,结果具有良好的主瓣和副瓣性能,证明了该方法的有效性。与以往工作相比,该方法可以更快、更有效地解决复杂的波束形成问题,对无线应用中波束形成系统的设计具有重要意义。

关键词:天线波束;幅相编码超表面;远场综合;半正定松弛

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Balanis CA, 2011. Modern Antenna Handbook. John Wiley & Sons, Hoboken, USA.

[2]Bao L, Wu RY, Fu XJ, et al., 2019. Multi-beam forming and controls by metasurface with phase and amplitude modulations. IEEE Trans Antenn Propag, 67(10):6680-6685.

[3]Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press, Cambridge, USA.

[4]Bucci OM, D’Elia G, Mazzarella G, et al., 1994. Antenna pattern synthesis: a new general approach. Proc IEEE, 82(3):358-371.

[5]Bucci OM, Caccavale L, Isernia T, 2002. Optimal far-field focusing of uniformly spaced arrays subject to arbitrary upper bounds in nontarget directions. IEEE Trans Antenn Propag, 50(11):1539-1554.

[6]Caorsi S, Massa A, Pastorino M, et al., 2005. Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method. IEEE Trans Antenn Propag, 53(1):372-376.

[7]Cui TJ, Liu S, Zhang L, 2017. Information metamaterials and metasurfaces. J Mater Chem C, 5(15):3644-3668.

[8]Dolph CL, 1946. A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level. Proc IRE, 34(6):335-348.

[9]Fazel M, Hindi H, Boyd S, 2004. Rank minimization and applications in system theory. Proc American Control Conf, p.3273-3278.

[10]Grant M, Boyd S, 2020. CVX: Matlab Software for Disciplined Convex Programming, Version 2.2. http://cvxr.com/cvx [Accessed on Jan. 30, 2020].

[11]Kajenski PJ, 2012. Phase only antenna pattern notching via a semidefinite programming relaxation. IEEE Trans Antenn Propag, 60(5):2562-2565.

[12]Khodier MM, Christodoulou CG, 2005. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans Antenn propag, 53(8):2674-2679.

[13]Lebret H, Boyd S, 1997. Antenna array pattern synthesis via convex optimization. IEEE Trans Signal Process, 45(3):526-532.

[14]Li JY, Qi YX, Zhou SG, 2017. Shaped beam synthesis based on superposition principle and Taylor method. IEEE Trans Antenn Propag, 65(11):6157-6160.

[15]Liang JC, Cheng Q, Gao Y, et al., 2022. An angle-insensitive 3-bit reconfigurable intelligent surface. IEEE Trans Antenn Propag, 70(10):8798-8808.

[16]Lou Y, Jin L, Wang HM, et al., 2023. Multi-stream signals separation based on space-time-isomeric (spatio) array using metasurface antenna. Sci China Inform Sci, early access.

[17]Luo ZQ, Ma WK, So AMC, et al., 2010. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process Mag, 27(3):20-34.

[18]Nai SE, Ser W, Yu ZL, et al., 2010. Beampattern synthesis for linear and planar arrays with antenna selection by convex optimization. IEEE Trans Antenn Propag, 58(12):3923-3930.

[19]Palacios J, De Donno D, Widmer J, 2016. Lightweight and effective sector beam pattern synthesis with uniform linear antenna arrays. IEEE Antenn Wirel Propag Lett, 16:605-608.

[20]Shi L, Deng YK, Sun HF, et al., 2012. An improved real-coded genetic algorithm for the beam forming of spaceborne SAR. IEEE Trans Antenn Propag, 60(6):3034-3040.

[21]Strang G, 2023. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley MA, USA.

[22]Sun S, Ma HF, Gou Y, et al., 2023. Spin- and space-multiplexing metasurface for independent phase controls of quadruplex polarization channels. Adv Opt Mater, 11(3):2202275.

[23]Tsui KM, Chan SC, 2010. Pattern synthesis of narrowband conformal arrays using iterative second-order cone programming. IEEE Trans Antenn Propag, 58(6):1959-1970.

[24]Wang F, Balakrishnan V, Zhou PY, et al., 2003. Optimal array pattern synthesis using semidefinite programming. IEEE Trans Signal Process, 51(5):1172-1183.

[25]Wu JW, Wang ZX, Fang ZQ, et al., 2020. Full-state synthesis of electromagnetic fields using high efficiency phase-only metasurfaces. Adv Funct Mater, 30(39):2004144.

[26]Wu JW, Wang ZX, Zhang L, et al., 2021. Anisotropic metasurface holography in 3-D space with high resolution and efficiency. IEEE Trans Antenn Propag, 69(1):302-316.

[27]Wu JW, Wang ZX, Wu RY, et al., 2023. Simple and comprehensive strategy to synthesize Huygens metasurface antenna and verification. IIEEE Trans Antenn Propag, 71(8):6652-6666.

[28]Yang F, Yang SW, Chen YK, et al., 2018. Convex optimization of pencil beams through large-scale 4-D antenna arrays. IEEE Trans Antenn Propag, 66(7):3453-3462.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE