Full Text:   <1909>

Summary:  <1409>

CLC number: O436.4

On-line Access: 2019-05-14

Received: 2018-06-28

Revision Accepted: 2018-11-16

Crosschecked: 2019-04-11

Cited: 0

Clicked: 4827

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xing-jun Wang

http://orcid.org/0000-0001-8206-2544

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.4 P.458-471

http://doi.org/10.1631/FITEE.1800407


Graphene-based silicon modulators


Author(s):  Hao-wen Shu, Ming Jin, Yuan-sheng Tao, Xing-jun Wang

Affiliation(s):  State Key Laboratory on Advanced Optical Communication Systems and Networks, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China; more

Corresponding email(s):   haowenshu@pku.edu.cn, mjin@pku.edu.cn, ystao@pku.edu.cn, xjwang@pku.edu.cn

Key Words:  Silicon photonics, Graphene, Optical modulator


Hao-wen Shu, Ming Jin, Yuan-sheng Tao, Xing-jun Wang. Graphene-based silicon modulators[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4): 458-471.

@article{title="Graphene-based silicon modulators",
author="Hao-wen Shu, Ming Jin, Yuan-sheng Tao, Xing-jun Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="4",
pages="458-471",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800407"
}

%0 Journal Article
%T Graphene-based silicon modulators
%A Hao-wen Shu
%A Ming Jin
%A Yuan-sheng Tao
%A Xing-jun Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 4
%P 458-471
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800407

TY - JOUR
T1 - Graphene-based silicon modulators
A1 - Hao-wen Shu
A1 - Ming Jin
A1 - Yuan-sheng Tao
A1 - Xing-jun Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 4
SP - 458
EP - 471
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800407


Abstract: 
silicon photonics is a promising technology to address the demand for dense and integrated next-generation optical interconnections due to its complementary-metal-oxide-semiconductor (CMOS) compatibility. However, one of the key building blocks, the silicon modulator, suffers from several drawbacks, including a limited bandwidth, a relatively large footprint, and high power consumption. The graphene-based silicon modulator, which benefits from the excellent optical properties of the two-dimensional graphene material with its unique band structure, has significantly advanced the above critical figures of merit. In this work, we review the state-of-the-art graphene-based silicon modulators operating in various mechanisms, i.e., thermal-optical, electro-optical, and plasmonic. It is shown that graphene-based silicon modulators possess the potential to have satisfactory characteristics in intra- and inter-chip connections.

硅基石墨烯调制器

摘要:为满足下一代光互联技术高带宽、低功耗的需求,基于金属互补氧化物半导体(CMOS)工艺的硅基光电子技术有望实现光电器件大规模、高密度集成,在高速率数据传输方面带来新突破。硅基调制器是硅基光电子学的核心器件之一,然而传统基于等离子色散效应的硅基耗尽式调制器在带宽、尺寸和功耗方面存在一定限制,影响传输系统整体性能。为解决该问题,石墨烯被引入硅基光电子器件的材料体系,其优异的电学传输特性和光电特性有效提升传统硅基光调制器单元器件性能。我们总结了基于热光、电光、等离子体等硅基石墨烯调制器的最新进展,其出色性能使硅基石墨烯调制器有望成为下一代片上及片外光互连技术的候选方案。

关键词:硅基光电子学;石墨烯;光调制器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Andersen DR, 2010. Graphene-based long-wave infrared TM surface plasmon modulator. J Opt Soc Am B, 27(4):818-823.

[2]Ansell D, Radko IP, Han Z, et al., 2015. Hybrid graphene plasmonic waveguide modulators. Nat Commun, 6:8846.

[3]Balandin AA, Ghosh S, Bao WZ, et al., 2008. Superior thermal conductivity of single-layer graphene. Nano Lett, 8(3):902-907.

[4]Chen L, Doerr CR, Dong P, et al., 2011. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing. Opt Expr, 19(26):B946-B951.

[5]Chen L, Dong P, Chen YK, 2012. Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/s. IEEE Photon Technol Lett, 24(11):936-938.

[6]Chen X, Wang Y, Xiang YJ, et al., 2016. A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J Lightw Technol, 34(21):4948-4953.

[7]Cocorullo G, Rendina I, 1992. Thermo-optical modulation at 1.5$upmu$m in silicon etalon. Electron Lett, 28(1):83-85.

[8]Dalir H, Xia Y, Wang Y, et al., 2016. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photon, 3(9):1564-1568.

[9]Das S, Salandrino A, Wu JZ, et al., 2015. Near-infrared electro-optic modulator based on plasmonic graphene. Opt Lett, 40(7):1516-1519.

[10]Ding Y, Zhu X, Xiao SS, et al., 2015. Effective electro- optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett, 15(7):4393-4400.

[11]Ding Y, Guan X, Zhu X, et al., 2017. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 9(40):15576-15581.

[12]Dionne JA, Diest K, Sweatlock LA, et al., 2009. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett, 9(2):897-902.

[13]Gan S, Cheng CT, Zhan YH, et al., 2015. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 7(47):20249-20255.

[14]Gao Y, Zhou W, Sun XK, et al., 2017. Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si$_3$N$_4$ ring resonator. Opt Lett, 42(10):1950-1953.

[15]Gosciniak J, Tan DTH, 2013a. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology, 24(18):185202.

[16]Gosciniak J, Tan DTH, 2013b. Theoretical investigation of graphene-based photonic modulators. Sci Rep, 3:1897.

[17]Haffner C, Heni W, Fedoryshyn Y, et al., 2015. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photon, 9(8):525-528.

[18]Hanson GW, 2008. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys, 103(6):064302.

[19]Hu X, Wang J, 2017. High figure of merit graphene modulator based on long-range hybrid plasmonic slot wave-guide. IEEE J Quant Electron, 53(3):7200308.

[20]Jones R, Liao L, Liu AS, et al., 2004. Optical characterization of 1-GHz silicon-based optical modulator. Proc SPIE, 5451:8-15.

[21]Kim JT, Chung KH, Choi CG, 2013. Thermo-optic mode extinction modulator based on graphene plasmonic wave-guide. Opt Expr, 21(13):15280-15286.

[22]Koeber S, Palmer R, Lauermann M, et al., 2015. Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light Sci Appl, 4(2):e255.

[23]Lao J, Tao J, Wang QJ, et al., 2014. Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators. Laser Photon Rev, 8(4):569-574.

[24]Li TT, Zhang JL, Yi HX, et al., 2013. Low-voltage, high speed, compact silicon modulator for BPSK modulation. Opt Expr, 21(20):23410-23415.

[25]Li W, Chen BG, Meng C, et al., 2014. Ultrafast all-optical graphene modulator. Nano Lett, 14(2):955-959.

[26]Li ZQ, Henriksen EA, Jiang Z, et al., 2008. Dirac charge dynamics in graphene by infrared spectroscopy. Nat Phys, 4(7):532-535.

[27]Li ZY, Yu NF, 2013. Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl Phys Lett, 102(13):131108.

[28]Liu AS, Jones R, Liao L, et al., 2004. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 427(6975):615-618.

[29]Liu M, Yin XB, Ulin-Avila E, et al., 2011. A graphene-based broadband optical modulator. Nature, 474(7349):64-67.

[30]Liu M, Yin XB, Zhang X, 2012. Double-layer graphene optical modulator. Nano Lett, 12(3):1482-1485.

[31]Liu WJ, Asheghi M, 2005. Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J Appl Phys, 98(12):123523.

[32]Miller DAB, 2009. Device requirements for optical interconnects to silicon chips. Proc IEEE, 97(7):1166-1185.

[33]Miller DAB, 2012. Energy consumption in optical modulators for interconnects. Opt Expr, 20(S2):A293-A308.

[34]Mohsin M, Schall D, Otto M, et al., 2014. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt Expr, 22(12):15292-15297.

[35]Mohsin M, Neumaier D, Schall D, et al., 2015. Experimental verification of electro-refractive phase modulation in graphene. Sci Rep, 5:10967.

[36]Novoselov KS, Geim AK, Morozov SV, et al., 2004. Electric field effect in atomically thin carbon films. Science, 306(5696):666-669.

[37]Ono M, Hata M, Tsunekawa M, et al., 2018. Ultrafast and energy-efficient all-optical modulator based on deep-subwavelength graphene-loaded plasmonic waveguides. Conf on Lasers and Electro-Optics, Article FF2L.4.

[38]Phare CT, Lee YHD, Cardenas J, et al., 2015. Graphene electro-optic modulator with 30hspace{0.25em}GHz bandwidth. Nat Photon, 9(8):511-514.

[39]Phatak A, Cheng ZZ, Qin CY, et al., 2016. Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Opt Lett, 41(11):2501-2504.

[40]Pop E, Varshney V, Roy AK, 2012. Thermal properties of graphene: fundamentals and applications. MRS Bull, 37(12):1273-1281.

[41]Qiu CY, Gao WL, Vajtai R, et al., 2014. Efficient modulation of 1.55 $upmu$m radiation with gated graphene on a silicon microring resonator. Nano Lett, 14(12):6811-6815.

[42]Qiu CY, Yang YX, Li C, et al., 2017. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci Rep, 7(1):17046.

[43]Reed GT, Mashanovich G, Gardes FY, et al., 2010. Silicon optical modulators. Nat Photon, 4(8):518-526.

[44]Shi Z, Gan L, Xiao TH, et al., 2015. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photon, 2(11):1513-1518.

[45]Shin JS, Kim JT, 2015. Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic wave-guide. Nanotechnology, 26(36):365201.

[46]Shu HW, Tao YS, Jin M, et al., 2018a. A real-time tunable arbitrary power ratios graphene based power divider. Sci China Inform Sci, 61(8):080408.

[47]Shu HW, Su ZT, Huang L, et al., 2018b. Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci Rep, 8(1):991.

[48]Soref R, Larenzo J, 1986. All-silicon active and passive guided-wave components for λ=1.3 and 1.6 µm. IEEE J Quant Electron, 22(6):873-879.

[49]Sorianello V, Midrio M, Romagnoli M, 2015. Design optimization of single and double layer graphene phase modulators in SOI. Opt Expr, 23(5):6478-6490.

[50]Sorianello V, de Angelis G, Cassese T, et al., 2016. Complex effective index in graphene-silicon waveguides. Opt Expr, 24(26):29984-29993.

[51]Sorianello V, Midrio M, Contestabile G, et al., 2018. Graphene-silicon phase modulators with gigahertz bandwidth. Nat Photon, 12(1):40-44.

[52]Thomson D, Zilkie A, Bowers JE, et al., 2016. Roadmap on silicon photonics. J Opt, 18(7):073003.

[53]Wang F, Zhang YB, Tian CS, et al., 2008. Gate-variable optical transitions in graphene. Science, 320(5873):206-209.

[54]Xiao TH, Cheng ZZ, Goda K, 2017. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits. Nanotechnology, 28(24):245201.

[55]Xu C, Jin YC, Yang LZ, et al., 2012. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide. Opt Expr, 20(20):22398-22405.

[56]Xu F, Das S, Gong Y, et al., 2015. Complex refractive index tunability of graphene at 1550hspace{0.167em}nm wavelength. Appl Phys Lett, 106(3):031109.

[57]Xu ZZ, Qiu CY, Yang YX, et al., 2017. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Opt Expr, 25(16):19479-19486.

[58]Yamane T, Nagai N, Katayama SI, et al., 2002. Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J Appl Phys, 91(12):9772.

[59]Yan HG, Li XS, Chandra B, et al., 2012. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol, 7(5):330-334.

[60]Yan SQ, Zhu XL, Frandsen LH, et al., 2017. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat Commun, 8:14411.

[61]Ye SW, Yuan F, Zou XH, et al., 2017. High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J Sel Top Quant Electron, 23(1):3400105.

[62]Yin YL, Li J, Xu Y, et al., 2018. Silicon-graphene photonic devices. J Semicond, 39(6):061009.

[63]Yu LH, Dai DX, He SL, 2014. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl Phys Lett, 105(25):251104.

[64]Yu LH, Yin YL, Shi YC, et al., 2016. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 3(2):159-166.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE