Full Text:   <2086>

CLC number: O439

On-line Access: 2019-05-14

Received: 2018-08-11

Revision Accepted: 2018-12-02

Crosschecked: 2019-04-11

Cited: 0

Clicked: 6508

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shang-jian Zhang

http://orcid.org/0000-0001-9131-4002

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.4 P.472-480

http://doi.org/10.1631/FITEE.1800482


Heterogeneous III-V silicon photonic integration: components and characterization


Author(s):  Shang-jian Zhang, Yong Liu, Rong-guo Lu, Bao Sun, Lian-shan Yan

Affiliation(s):  School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; more

Corresponding email(s):   sjzhang@uestc.edu.cn, yongliu@uestc.edu.cn

Key Words:  Heterogeneous photonic integration, Optical interconnection, On-wafer characterization


Shang-jian Zhang, Yong Liu, Rong-guo Lu, Bao Sun, Lian-shan Yan. Heterogeneous III-V silicon photonic integration: components and characterization[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4): 472-480.

@article{title="Heterogeneous III-V silicon photonic integration: components and characterization",
author="Shang-jian Zhang, Yong Liu, Rong-guo Lu, Bao Sun, Lian-shan Yan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="4",
pages="472-480",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800482"
}

%0 Journal Article
%T Heterogeneous III-V silicon photonic integration: components and characterization
%A Shang-jian Zhang
%A Yong Liu
%A Rong-guo Lu
%A Bao Sun
%A Lian-shan Yan
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 4
%P 472-480
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800482

TY - JOUR
T1 - Heterogeneous III-V silicon photonic integration: components and characterization
A1 - Shang-jian Zhang
A1 - Yong Liu
A1 - Rong-guo Lu
A1 - Bao Sun
A1 - Lian-shan Yan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 4
SP - 472
EP - 480
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800482


Abstract: 
Heterogeneous III-V silicon (Si) photonic integration is considered one of the key methods for realizing power and cost-effective optical interconnections, which are highly desired for future high-performance computers and datacenters. We review the recent progress in heterogeneous III-V/Si photonic integration, including transceiving devices and components. We also describe the progress in the on-wafer characterization of photonic integration circuits, especially on the heterogeneous III-V/Si platform.

III-V/Si异质光子集成:组件及其特性

摘要:III-V/Si异质光子集成被视为实现能源效率和成本效率的光互连关键技术之一,在未来高性能计算机和数据中心有极大潜力。本文综述了包括收发器件和组件的III-V/Si异质光子集成的最新研究进展,并报告了在光子集成回路,特别是异质集成平台上实现光子集成回路的晶圆级测试分析进展。

关键词:异质光子集成;光互连;晶圆级测试分析

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arakawa Y, Nakamura T, Urino Y, et al., 2013. Silicon photonics for next generation system integration platform. IEEE Commun Mag, 51(3):72-77.

[2]Beling A, Cross AS, Piels M, et al., 2013. InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation. Opt Expr, 21(22):25901-25906.

[3]Cristofori V, da Ros F, Ozolins O, et al., 2017. 25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML. IEEE Photon Technol Lett, 29(12):960-963.

[4]https://doi.org/ 10.1109/LPT.2017.2700497

[5]Dhoore S, Li LY, Abbasi A, et al., 2016. Demonstration of a discretely tunable III-V-on-silicon sampled grating DFB laser. IEEE Photon Technol Lett, 28(21):2343-2346.

[6]Doerr C, 2015. Silicon photonic integration in telecommunications. Front Phys, 3(2):137-179.

[7]Durel J, Bakir BB, Jany C, et al., 2016a. First demonstration of a back-side integrated heterogeneous hybrid III-V/Si DBR lasers for Si-photonics applications. IEEE Int Electron Devices Meeting, p.584-587.

[8]Durel J, Ferrotti T, Chantre A, et al., 2016b. Realization of back-side heterogeneous hybrid III-V/Si DBR lasers for silicon photonics. Proc SPIE, p.1-12.

[9]Gallet A, Levaufre G, Accard A, et al., 2018. Hybrid III-V on silicon integrated distributed feedback laser and ring resonator for 25 Gb/s future access networks. J Lightw Technol, 36(8):1498-1502.

[10]Guan H, Novack A, Galfsky T, et al., 2018. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication. Opt Expr, 26(7): 7920-7933.

[11]Hulme JC, Doylend JK, Bowers JE, 2013. Widely tunable vernier ring laser on heterogeneous silicon. Opt Expr, 21(17):19718-19722.

[12]Inoue D, Jung D, Norman J, et al., 2018. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt Expr, 26(6):7022-7033.

[13]Komljenovic T, Davenport M, Srinivasan S, et al., 2015a. Narrow linewidth tunable laser using coupled resonator mirrors. Optical Fiber Communications Conf, p.1-3.

[14]Komljenovic T, Srinivasan S, Norberg E, et al., 2015b. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quant Electr, 21(6):1501909.

[15]Kurian G, Miller JE, Psota J, et al., 2010. ATAC: a 1000-core cache-coherent processor with on-chip optical network. 19th Int Conf on Parallel Architectures and Compilation Techniques, p.477-488.

[16]Le Beux S, Li H, O’Connor I, et al., 2014. Chameleon: channel efficient optical network-on-chip. Proc Design, Automation & Test in Europe Conf & Exhibition, p.1-6.

[17]Lee CW, Ng DKT, Ren M, et al., 2016. Generic heterogeneously integrated III–V lasers-on-chip with metal-coated etched-mirror. IEEE J Sel Top Quant Electr, 22(6): 1500409.

[18]Liu AY, Zhang C, Norman J, et al., 2014. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104(4):041104.

[19]Pan Y, Kumar P, Kim J, et al., 2009. Firefly: illuminating future network-on-chip with nanophotonics. Int Symp on Computer Architecture, p.429-440.

[20]Piels M, Bauters JF, Davenport ML, et al., 2014. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors. J Lightw Technol, 32(4):817-823.

[21]Srinivasan S, Davenport M, Komljenovic T, et al., 2015. Coupled-ring-resonator-mirror-based heterogeneous III-V silicon tunable laser. IEEE Photon J, 7(3):2700908.

[22]Sun C, Wade MT, Lee Y, et al., 2015. Single-chip microprocessor that communicates directly using light. Nature, 528(7583):534-538.

[23]Sun J, Timurdogan E, Yaacobi A, et al., 2013. Large-scale nanophotonic phased array. Nature, 493(7431):195-199.

[24]Sun KY, Jung D, Shang C, et al., 2018. Low dark current III-V on silicon photodiodes by heteroepitaxy. Opt Expr, 26(10):13605-13613.

[25]Uvin S, Kumari S, de Groote A, et al., 2018. 1.3 μm InAs/ GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Expr, 26(14):18302-18309.

[26]Vantrease D, Schreiber R, Monchiero M, et al., 2008. Corona: system implications of emerging nanophotonic technology. 35th Int Symp on Computer Architecture, p.153-164.

[27]Ye YY, Xu J, Huang BH, et al., 2013. 3-D mesh-based optical network-on-chip for multiprocessor system-on-chip. IEEE Trans Comput Aid Des Int, 32(4):584-596.

[28]Zhang C, Zhang SJ, Peters JD, et al., 2016. 2.56 Tbps (8×8× 40 Gbps) fully-integrated silicon photonic interconnection circuit. Conf on Lasers and Electro-Optics, p.1-2.

[29]Zhang J, Haq B, O’Callaghan J, et al., 2018. Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser. Opt Expr, 26(7):8821-8830.

[30]Zhang SJ, Zhang C, Wang H, et al., 2017. On-wafer probing-kit for RF characterization of silicon photonic integrated transceivers. Opt Expr, 25(12):13340-13350.

[31]Zhu S, Shi B, Li Q, et al., 2018. Room-temperature electrically-pumped 1.5μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt Expr, 26(11):14514-14523.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE