CLC number: O439
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-04-11
Cited: 0
Clicked: 6861
Shang-jian Zhang, Yong Liu, Rong-guo Lu, Bao Sun, Lian-shan Yan. Heterogeneous III-V silicon photonic integration: components and characterization[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4): 472-480.
@article{title="Heterogeneous III-V silicon photonic integration: components and characterization",
author="Shang-jian Zhang, Yong Liu, Rong-guo Lu, Bao Sun, Lian-shan Yan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="4",
pages="472-480",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800482"
}
%0 Journal Article
%T Heterogeneous III-V silicon photonic integration: components and characterization
%A Shang-jian Zhang
%A Yong Liu
%A Rong-guo Lu
%A Bao Sun
%A Lian-shan Yan
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 4
%P 472-480
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800482
TY - JOUR
T1 - Heterogeneous III-V silicon photonic integration: components and characterization
A1 - Shang-jian Zhang
A1 - Yong Liu
A1 - Rong-guo Lu
A1 - Bao Sun
A1 - Lian-shan Yan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 4
SP - 472
EP - 480
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800482
Abstract: Heterogeneous III-V silicon (Si) photonic integration is considered one of the key methods for realizing power and cost-effective optical interconnections, which are highly desired for future high-performance computers and datacenters. We review the recent progress in heterogeneous III-V/Si photonic integration, including transceiving devices and components. We also describe the progress in the on-wafer characterization of photonic integration circuits, especially on the heterogeneous III-V/Si platform.
[1]Arakawa Y, Nakamura T, Urino Y, et al., 2013. Silicon photonics for next generation system integration platform. IEEE Commun Mag, 51(3):72-77.
[2]Beling A, Cross AS, Piels M, et al., 2013. InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation. Opt Expr, 21(22):25901-25906.
[3]Cristofori V, da Ros F, Ozolins O, et al., 2017. 25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML. IEEE Photon Technol Lett, 29(12):960-963.
[4]https://doi.org/ 10.1109/LPT.2017.2700497
[5]Dhoore S, Li LY, Abbasi A, et al., 2016. Demonstration of a discretely tunable III-V-on-silicon sampled grating DFB laser. IEEE Photon Technol Lett, 28(21):2343-2346.
[6]Doerr C, 2015. Silicon photonic integration in telecommunications. Front Phys, 3(2):137-179.
[7]Durel J, Bakir BB, Jany C, et al., 2016a. First demonstration of a back-side integrated heterogeneous hybrid III-V/Si DBR lasers for Si-photonics applications. IEEE Int Electron Devices Meeting, p.584-587.
[8]Durel J, Ferrotti T, Chantre A, et al., 2016b. Realization of back-side heterogeneous hybrid III-V/Si DBR lasers for silicon photonics. Proc SPIE, p.1-12.
[9]Gallet A, Levaufre G, Accard A, et al., 2018. Hybrid III-V on silicon integrated distributed feedback laser and ring resonator for 25 Gb/s future access networks. J Lightw Technol, 36(8):1498-1502.
[10]Guan H, Novack A, Galfsky T, et al., 2018. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication. Opt Expr, 26(7): 7920-7933.
[11]Hulme JC, Doylend JK, Bowers JE, 2013. Widely tunable vernier ring laser on heterogeneous silicon. Opt Expr, 21(17):19718-19722.
[12]Inoue D, Jung D, Norman J, et al., 2018. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt Expr, 26(6):7022-7033.
[13]Komljenovic T, Davenport M, Srinivasan S, et al., 2015a. Narrow linewidth tunable laser using coupled resonator mirrors. Optical Fiber Communications Conf, p.1-3.
[14]Komljenovic T, Srinivasan S, Norberg E, et al., 2015b. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quant Electr, 21(6):1501909.
[15]Kurian G, Miller JE, Psota J, et al., 2010. ATAC: a 1000-core cache-coherent processor with on-chip optical network. 19th Int Conf on Parallel Architectures and Compilation Techniques, p.477-488.
[16]Le Beux S, Li H, O’Connor I, et al., 2014. Chameleon: channel efficient optical network-on-chip. Proc Design, Automation & Test in Europe Conf & Exhibition, p.1-6.
[17]Lee CW, Ng DKT, Ren M, et al., 2016. Generic heterogeneously integrated III–V lasers-on-chip with metal-coated etched-mirror. IEEE J Sel Top Quant Electr, 22(6): 1500409.
[18]Liu AY, Zhang C, Norman J, et al., 2014. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104(4):041104.
[19]Pan Y, Kumar P, Kim J, et al., 2009. Firefly: illuminating future network-on-chip with nanophotonics. Int Symp on Computer Architecture, p.429-440.
[20]Piels M, Bauters JF, Davenport ML, et al., 2014. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors. J Lightw Technol, 32(4):817-823.
[21]Srinivasan S, Davenport M, Komljenovic T, et al., 2015. Coupled-ring-resonator-mirror-based heterogeneous III-V silicon tunable laser. IEEE Photon J, 7(3):2700908.
[22]Sun C, Wade MT, Lee Y, et al., 2015. Single-chip microprocessor that communicates directly using light. Nature, 528(7583):534-538.
[23]Sun J, Timurdogan E, Yaacobi A, et al., 2013. Large-scale nanophotonic phased array. Nature, 493(7431):195-199.
[24]Sun KY, Jung D, Shang C, et al., 2018. Low dark current III-V on silicon photodiodes by heteroepitaxy. Opt Expr, 26(10):13605-13613.
[25]Uvin S, Kumari S, de Groote A, et al., 2018. 1.3 μm InAs/ GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Expr, 26(14):18302-18309.
[26]Vantrease D, Schreiber R, Monchiero M, et al., 2008. Corona: system implications of emerging nanophotonic technology. 35th Int Symp on Computer Architecture, p.153-164.
[27]Ye YY, Xu J, Huang BH, et al., 2013. 3-D mesh-based optical network-on-chip for multiprocessor system-on-chip. IEEE Trans Comput Aid Des Int, 32(4):584-596.
[28]Zhang C, Zhang SJ, Peters JD, et al., 2016. 2.56 Tbps (8×8× 40 Gbps) fully-integrated silicon photonic interconnection circuit. Conf on Lasers and Electro-Optics, p.1-2.
[29]Zhang J, Haq B, O’Callaghan J, et al., 2018. Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser. Opt Expr, 26(7):8821-8830.
[30]Zhang SJ, Zhang C, Wang H, et al., 2017. On-wafer probing-kit for RF characterization of silicon photonic integrated transceivers. Opt Expr, 25(12):13340-13350.
[31]Zhu S, Shi B, Li Q, et al., 2018. Room-temperature electrically-pumped 1.5μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt Expr, 26(11):14514-14523.
Open peer comments: Debate/Discuss/Question/Opinion
<1>