Full Text:   <4051>

Summary:  <93>

CLC number: TP183

On-line Access: 2020-03-04

Received: 2019-06-24

Revision Accepted: 2019-08-19

Crosschecked: 2019-10-23

Cited: 0

Clicked: 1073

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Liang-jie Sun

http://orcid.org/0000-0003-0810-1431

Jian-quan Lu

http://orcid.org/0000-0003-4423-6034

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.2 P.260-267

http://doi.org/10.1631/FITEE.1900312


Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable


Author(s):  Liang-jie Sun, Jian-quan Lu, Wai-Ki Ching

Affiliation(s):  School of Mathematics, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   1546258649@qq.com, jqluma@seu.edu.cn, wching@hku.hk

Key Words:  Aperiodic sampled-data control, Boolean control networks, Unstable subsystem, Discretized Lyapunov function, Dwell time


Liang-jie Sun, Jian-quan Lu, Wai-Ki Ching. Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(2): 260-267.

@article{title="Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable",
author="Liang-jie Sun, Jian-quan Lu, Wai-Ki Ching",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="2",
pages="260-267",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900312"
}

%0 Journal Article
%T Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable
%A Liang-jie Sun
%A Jian-quan Lu
%A Wai-Ki Ching
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 2
%P 260-267
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900312

TY - JOUR
T1 - Switching-based stabilization of aperiodic sampled-data Boolean control networks with all subsystems unstable
A1 - Liang-jie Sun
A1 - Jian-quan Lu
A1 - Wai-Ki Ching
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 2
SP - 260
EP - 267
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900312


Abstract: 
We aim to further study the global stability of boolean control networks (BCNs) under aperiodic sampled-data control (ASDC). According to our previous work, it is known that a BCN under ASDC can be transformed into a switched Boolean network (SBN), and further global stability of the BCN under ASDC can be obtained by studying the global stability of the transformed SBN. Unfortunately, since the major idea of our previous work is to use stable subsystems to offset the state divergence caused by unstable subsystems, the SBN considered has at least one stable subsystem. The central thought in this paper is that switching behavior also has good stabilization; i.e., the SBN can also be stable with appropriate switching laws designed, even if all subsystems are unstable. This is completely different from that in our previous work. Specifically, for this case, the dwell time (DT) should be limited within a pair of upper and lower bounds. By means of the discretized Lyapunov function and DT, a sufficient condition for global stability is obtained. Finally, the above results are demonstrated by a biological example.

基于切换机制的所有子系统不稳定的非周期采样布尔控制网络镇定问题研究

孙靓洁1,卢剑权1,Wai-Ki CHING2
1东南大学数学学院,中国南京市,210096
2香港大学数学系,中国香港

摘要:本文旨在进一步研究带有非周期采样控制的布尔控制网络的全局稳定性。前期工作指出一个带有非周期采样控制的布尔控制网络能够被转化为一个切换布尔网络;通过研究转化后的切换布尔网络的全局稳定性,可以进一步得到带有非周期采样控制的布尔控制网络的全局稳定性。遗憾的是,由于前期工作主要思想是利用稳定子系统抵消由不稳定子系统引起的状态发散,因此所考虑的切换布尔网络至少含有一个稳定子系统。本文主旨是恰当的切换行为也可以具有良好稳定特性;即当所有子系统都不稳定时,通过设计合适的切换律,切换布尔网络也能达到稳定。这与前期工作的思想完全不同。具体地,对这种情况,首先驻留时间被要求限制在一对上下界内;然后,利用离散化李雅普诺夫函数和驻留时间方法,得到一个全局稳定的充分条件;最后,通过一个生物实例来论证所得结论。

关键词:非周期采样控制;布尔控制网络;不稳定子系统;离散化李雅普诺夫函数;驻留时间

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akutsu T, Miyano S, Kuhara S, 1999. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp Biocomput, 4:17-28.

[2]Cheng DZ, 2014. On finite potential games. Automatica, 50(7):1793-1801.

[3]Cheng DZ, Qi HS, 2010. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251-2258.

[4]Cheng DZ, Qi HS, Li ZQ, 2011a. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. Springer Science & Business Media, London, UK.

[5]Cheng DZ, Qi HS, Li ZQ, et al., 2011b. Stability and stabilization of Boolean networks. Int J Robust Nonl Contr, 21(2):134-156.

[6]Ding XY, Li HT, Yang QQ, et al., 2017. Stochastic stability and stabilization of n-person random evolutionary Boolean games. Appl Math Comput, 306:1-12.

[7]Ding Y, Xie D, Guo YQ, 2017. Controllability of Boolean control networks with multiple time delays. IEEE Trans Contr Netw Syst, 5(4):1787-1795.

[8]Feng SX, Wang J, Zhao J, 2017. Stability and robust stability of switched positive linear systems with all modes unstable. IEEE/CAA J Autom Sin, 6(1):167-176.

[9]Gu JW, Ching WK, Siu T, et al., 2013. On modeling credit defaults: a probabilistic Boolean network approach. Risk Dec Anal, 4(2):119-129.

[10]Guo YQ, 2018. Observability of Boolean control networks using parallel extension and set reachability. IEEE Trans Neur Netw Learn Syst, 29(12):6402-6408.

[11]Guo YQ, Wang P, Gui WH, et al., 2015. Set stability and set stabilization of Boolean control networks based on invariant subsets. Automatica, 61:106-112.

[12]Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437-467.

[13]Li BW, Lu JQ, Zhong J, et al., 2018. Fast-time stability of temporal Boolean networks. IEEE Trans Neur Netw Learn Syst, 30(8):2285-2294.

[14]Li BW, Lu JQ, Liu Y, et al., 2019a. The outputs robustness of Boolean control networks via pinning control. IEEE Trans Contr Netw Syst, in press.

[15]Li BW, Lou JG, Liu Y, et al., 2019b. Robust invariant set analysis of Boolean networks. Complexity, 2019: 2731395.

[16]Li HT, Ding XY, 2019. A control Lyapunov function approach to feedback stabilization of logical control networks. SIAM J Contr Optim, 57(2):810-831.

[17]Li HT, Wang YZ, 2017. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks. SIAM J Contr Optim, 55(6):3437-3457.

[18]Li HT, Wang YZ, Liu ZB, 2013. Simultaneous stabilization for a set of Boolean control networks. Syst Contr Lett, 62(12):1168-1174.

[19]Li HT, Zhao GD, Meng M, et al., 2018. A survey on applications of semi-tensor product method in engineering. Sci China Inform Sci, 61(1):010202.

[20]Li HT, Xu XJ, Ding XY, 2019. Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect. Appl Math Comput, 347:557-565.

[21]Li R, Yang M, Chu TG, 2014. State feedback stabilization for probabilistic Boolean networks. Automatica, 50(4):1272-1278.

[22]Li YY, Li BW, Liu Y, et al., 2018. Set stability and stabilization of switched Boolean networks with state-based switching. IEEE Access, 6:35624-35630.

[23]Li YY, Liu RJ, Lou JG, et al., 2019. Output tracking of Boolean control networks driven by constant reference signal. IEEE Access, 7:112572-112577.

[24]Liu RJ, Lu JQ, Liu Y, et al., 2018. Delayed feedback control for stabilization of Boolean control networks with state delay. IEEE Trans Neur Netw Learn Syst, 29(7):3283-3288.

[25]Liu RJ, Lu JQ, Zheng WX, et al., 2019. Output feedback control for set stabilization of Boolean control networks. IEEE Trans Neur Netw Learn Syst, in press.

[26]Liu Y, Li BW, Lu JQ, et al., 2017. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Contr, 62(12):6595-6601.

[27]Liu Z, Zhang XF, Lu XD, et al., 2018. Stabilization of positive switched delay systems with all modes unstable. Nonl Anal Hybr Syst, 29:110-120.

[28]Lu JQ, Li HT, Liu Y, et al., 2017. Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Contr Theory Appl, 11(13):2040-2047.

[29]Lu JQ, Li ML, Liu Y, et al., 2018a. Nonsingularity of Grain-like cascade FSRs via semi-tensor product. Sci China Inform Sci, 61(1):010204.

[30]Lu JQ, Sun LJ, Liu Y, et al., 2018b. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J Contr Optim, 56(6):4385-4404.

[31]Lu JQ, Li ML, Huang TW, et al., 2018c. The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices. Automatica, 96:393-397.

[32]Meng M, Lam J, Feng JE, et al., 2016. $l_1$-gain analysis and model reduction problem for Boolean control networks. Inform Sci, 348:68-83.

[33]Meng M, Lam J, Feng JE, et al., 2017a. Stability and guaranteed cost analysis of time-triggered Boolean networks. IEEE Trans Neur Netw Learn Syst, 29(8):3893-3899.

[34]Meng M, Liu L, Feng G, 2017b. Stability and $l_1$ gain analysis of Boolean networks with Markovian jump parameters. IEEE Trans Autom Contr, 62(8):4222-4228.

[35]Shmulevich I, Dougherty ER, Zhang W, 2002a. From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc IEEE, 90(11):1778-1792.

[36]Shmulevich I, Dougherty ER, Kim S, et al., 2002b. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261-274.

[37]Sun LJ, Lu JQ, Liu Y, et al., 2018. Variable structure controller design for Boolean networks. Neur Netw, 97:107-115.

[38]Tong LY, Liu Y, Li YY, et al., 2018. Robust control invariance of probabilistic Boolean control networks via event-triggered control. IEEE Access, 6:37767-37774.

[39]Torres PJR, Mercado EIS, Rifón LA, 2018a. Probabilistic Boolean network modeling of an industrial machine. J Intell Manuf, 29(4):875-890.

[40]Torres PJR, Mercado EIS, Rifón LA, 2018b. Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems. J Intell Manuf, 29(6):1393-1413.

[41]Wang YZ, Li HT, 2012. On definition and construction of Lyapunov functions for Boolean networks. Proc 10th World Congress on Intelligent Control and Automation, p.1247-1252.

[42]Wu YH, Shen TL, 2017. A finite convergence criterion for the discounted optimal control of stochastic logical networks. IEEE Trans Autom Contr, 63(1):262-268.

[43]Xiang WM, Xiao J, 2014. Stabilization of switched continuous-time systems with all modes unstable via dwell time switching. Automatica, 50(3):940-945.

[44]Yang JJ, Lu JQ, Li LL, et al., 2019. Event-triggered control for the synchronization of Boolean control networks. Nonl Dynam, 96(2):1335-1344.

[45]Yu YY, Wang B, Feng JE, 2019. Input observability of Boolean control networks. Neurocomputing, 333:22-28.

[46]Zhong J, Lu JQ, Huang TW, et al., 2016. Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE Trans Cybern, 47(11):3482-3493.

[47]Zhong J, Liu Y, Kou KI, et al., 2019. On the ensemble controllability of Boolean control networks using STP method. Appl Math Comput, 358:51-62.

[48]Zhu QX, Liu Y, Lu JQ, et al., 2018. On the optimal control of Boolean control networks. SIAM J Contr Optim, 56(2):1321-1341.

[49]Zhu SY, Lou JG, Liu Y, et al., 2018. Event-triggered control for the stabilization of probabilistic Boolean control networks. Complexity, 2018:9259348.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE