CLC number: O233
On-line Access: 2021-02-01
Received: 2019-08-30
Revision Accepted: 2019-10-27
Crosschecked: 2020-04-28
Cited: 0
Clicked: 4749
Citations: Bibtex RefMan EndNote GB/T7714
Ya-wen Shen, Yu-qian Guo, Wei-hua Gui. Stability of Boolean networks with state-dependent random impulses[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(2): 222-231.
@article{title="Stability of Boolean networks with state-dependent random impulses",
author="Ya-wen Shen, Yu-qian Guo, Wei-hua Gui",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="2",
pages="222-231",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900454"
}
%0 Journal Article
%T Stability of Boolean networks with state-dependent random impulses
%A Ya-wen Shen
%A Yu-qian Guo
%A Wei-hua Gui
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 2
%P 222-231
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900454
TY - JOUR
T1 - Stability of Boolean networks with state-dependent random impulses
A1 - Ya-wen Shen
A1 - Yu-qian Guo
A1 - Wei-hua Gui
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 2
SP - 222
EP - 231
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900454
Abstract: We investigate the stability of Boolean networks (BNs) with impulses triggered by both states and random factors. A hybrid index model is used to describe impulsive BNs. First, several necessary and sufficient conditions for forward completeness are obtained. Second, based on the stability criterion of probabilistic BNs and the forward completeness criterion, the necessary and sufficient conditions for the finite-time stability with probability one and the asymptotical stability in distribution are presented. The relationship between these two kinds of stability is discussed. Last, examples and time-domain simulations are provided to illustrate the obtained results.
[1]Ambrosino R, Calabrese F, Cosentino C, et al., 2008. On finite-time stability of state dependent impulsive dynamical systems. Proc American Control Conf, p.2897-2902.
[2]Chellaboina V, Haddad WM, 2002. A unification between partial stability and stability theory for time-varying systems. IEEE Contr Syst Mag, 22(6):66-75.
[3]Chen H, Sun JT, 2014. Stability and stabilisation of context-sensitive probabilistic Boolean networks. IET Contr Theory Appl, 8(17):2115-2121.
[4]Chen H, Li XD, Sun JT, 2015. Stabilization, controllability and optimal control of Boolean networks with impulsive effects and state constraints. IEEE Trans Autom Contr, 60(3):806-811.
[5]Chen HW, Wu B, Lu JQ, 2016. A minimum-time control for Boolean control networks with impulsive disturbances. Appl Math Comput, 273:477-483.
[6]Cheng DZ, 2011. Disturbance decoupling of Boolean control networks. IEEE Trans Autom Contr, 56(1):2-10.
[7]Cheng DZ, Qi HS, 2010. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251-2258.
[8]Cheng DZ, Qi H, Li Z, 2009. Controllability and observability of Boolean control networks. Automatica, 45(7):1659-1667.
[9]Cheng DZ, Qi HS, Li ZQ, 2011a. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. Springer, London, UK.
[10]Cheng DZ, Qi HS, Li ZQ, et al., 2011b. Stability and stabilization of Boolean networks. Int J Robust Nonl Contr, 21(2):134-156.
[11]Cheng DZ, Li CX, He FH, 2018. Observability of Boolean networks via set controllability approach. Syst Contr Lett, 115:22-25.
[12]Fornasini E, Valcher ME, 2014. Optimal control of Boolean control networks. IEEE Trans Autom Contr, 59(5):1258-1270.
[13]Guo YQ, Wang P, Gui WH, et al., 2015. Set stability and set stabilization of Boolean control networks based on invariant subsets. Automatica, 61:106-112.
[14]Guo YQ, Ding Y, Xie D, 2017. Invariant subset and set stability of Boolean networks under arbitrary switching signals. IEEE Trans Autom Contr, 62(8):4209-4214.
[15]Guo YQ, Shen YW, Gui WH, 2019a. Stability analysis of state-triggered impulsive Boolean networks based on a hybrid index model. Asian J Contr, 21:3624-2633.
[16]Guo YQ, Zhou RP, Wu YH, et al., 2019b. Stability and set stability in distribution of probabilistic Boolean networks. IEEE Trans Autom Contr, 64(2):736-742.
[17]Huang C, Lu JQ, Ho DWC, et al., 2020. Stabilization of probabilistic Boolean networks via pinning control strategy. Inform Sci, 510:205-217.
[18]Jiao TC, Zheng WX, 2016. Noise-to-state stability of nonlinear systems with random disturbances and impulses. Proc IEEE 55th Conf on Decision and Control, p.7276-7281.
[19]Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437-467.
[20]Laschov D, Margaliot M, Even G, 2013. Observability of Boolean networks: a graph-theoretic approach. Automatica, 49(8):2351-2362.
[21]Li F, Sun J, 2011a. Controllability of Boolean control networks with time delays in states. Automatica, 47(3):603-607.
[22]Li F, Sun J, 2011b. Observability analysis of Boolean control networks with impulsive effects. IET Contr Theory Appl, 5(14):1609-1616.
[23]Li HT, Wang YZ, 2013. Output feedback stabilization control design for Boolean control networks. Automatica, 49(12):3641-3645.
[24]Li HT, Wang YZ, Guo PL, 2016. State feedback based output tracking control of probabilistic Boolean networks. Inform Sci, 349-350:1-11.
[25]Li LL, Wang X, Li CD, et al., 2019. Exponential synchronizationlike criterion for state-dependent impulsive dynamical networks. IEEE Trans Neur Netw Learn Syst, 30(4):1025-1033.
[26]Li R, Chu TG, 2012. Complete synchronization of Boolean networks. IEEE Trans Neur Netw Learn Syst, 23(5):840-846.
[27]Li R, Yang M, Chu TG, 2014. State feedback stabilization for probabilistic Boolean networks. Automatica, 50(4):1272-1278.
[28]Li YY, Liu RJ, Lou JG, et al., 2019. Output tracking of Boolean control networks driven by constant reference signal. IEEE Access, 7:112572-112577.
[29]Li Z, Song J, Yang J, 2014. Partial stability of probabilistic Boolean network. Proc 26th Chinese Control and Decision Conf, p.1952-1956.
[30]Liu JY, Liu Y, Guo YQ, et al., 2019. Sampled-data state-feedback stabilization of probabilistic Boolean control networks: a control Lyapunov function approach. IEEE Trans Cybern. Early Access.
[31]Liu Y, Chen HW, Wu B, 2014. Controllability of Boolean control networks with impulsive effects and forbidden states. Math Meth Appl Sci, 37(1):1-9.
[32]Liu Y, Chen HW, Lu JQ, et al., 2015. Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 52:340-345.
[33]Liu Y, Sun LJ, Lu JQ, et al., 2016. Feedback controller design for the synchronization of Boolean control networks. IEEE Trans Neur Netw Learn Syst, 27(9):1991-1996.
[34]Liu Y, Li BW, Lu JQ, et al., 2017. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Contr, 62(12):6595-6601.
[35]Lu JQ, Zhong J, Li LL, et al., 2015. Synchronization analysis of master-slave probabilistic Boolean networks. Sci Rep, 5(1):13437.
[36]Meng M, Lam J, Feng JE, et al., 2018. Stability and guaranteed cost analysis of time-triggered Boolean networks. IEEE Trans Neur Netw Learn Syst, 29(8):3893-3899.
[37]Shah V, George RK, Sharma J, et al., 2018. Existence and uniqueness of classical and mild solutions of generalized impulsive evolution equation. Int J Nonl Sci Numer Simul, 19(7-8):775-780.
[38]Wu YH, Sun XM, Zhao XD, et al., 2019. Optimal control of Boolean control networks with average cost: a policy iteration approach. Automatica, 100:378-387.
[39]Xu XJ, Li HT, Li YL, et al., 2018. Output tracking control of Boolean control networks with impulsive effects. Math Meth Appl Sci, 41(4):1554-1564.
[40]Xu XR, Hong YG, 2013. Solvability and control design for synchronization of Boolean networks. J Syst Sci Comp, 26(6):871-885.
[41]Zhao Y, Cheng DZ, 2014. On controllability and stabilizability of probabilistic Boolean control networks. Sci China Inform Sci, 57(1):012202.
[42]Zhao Y, Li ZQ, Cheng DZ, 2011. Optimal control of logical control networks. IEEE Trans Autom Contr, 56(8):1766-1776.
[43]Zhong J, Lu JQ, Huang TW, et al., 2014. Synchronization of master-slave Boolean networks with impulsive effects: necessary and sufficient criteria. Neurocomputing, 143:269-274.
[44]Zhu QX, Yang L, Lu JQ, et al., 2018. On the optimal control of Boolean control networks. SIAM J Contr Optim, 56(2):1321-1341.
[45]Zhu SY, Lu JQ, Liu Y, 2019. Asymptotical stability of probabilistic Boolean networks with state delays. IEEE Trans Autom Contr, 65(4):1779-1784.
Open peer comments: Debate/Discuss/Question/Opinion
<1>