CLC number: TP393
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-12-30
Cited: 1
Clicked: 8477
Behrooz REZAIE, Mohammad-Reza JAHED MOTLAGH, Siavash KHORSANDI, Morteza ANALOUI. Global stability analysis of computer networks with arbitrary topology and time-varying delays[J]. Journal of Zhejiang University Science C, 2010, 11(3): 214-226.
@article{title="Global stability analysis of computer networks with arbitrary topology and time-varying delays",
author="Behrooz REZAIE, Mohammad-Reza JAHED MOTLAGH, Siavash KHORSANDI, Morteza ANALOUI",
journal="Journal of Zhejiang University Science C",
volume="11",
number="3",
pages="214-226",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910216"
}
%0 Journal Article
%T Global stability analysis of computer networks with arbitrary topology and time-varying delays
%A Behrooz REZAIE
%A Mohammad-Reza JAHED MOTLAGH
%A Siavash KHORSANDI
%A Morteza ANALOUI
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 3
%P 214-226
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910216
TY - JOUR
T1 - Global stability analysis of computer networks with arbitrary topology and time-varying delays
A1 - Behrooz REZAIE
A1 - Mohammad-Reza JAHED MOTLAGH
A1 - Siavash KHORSANDI
A1 - Morteza ANALOUI
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 3
SP - 214
EP - 226
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910216
Abstract: In this paper, we determine the delay-dependent conditions of global asymptotic stability for a class of multi-dimensional nonlinear time-delay systems with application to computer communication networks. A nonlinear delayed model is considered for a rate-based congestion control system of a heterogeneous network with arbitrary topology and time-varying delays. We propose a Lyapunov-based method to obtain a sufficient condition under which global asymptotic stability of the equilibrium is guaranteed. The main contribution of the paper lies in considering time variations of delays in a heterogeneous network which may be applicable in actual networks. Moreover, we obtain conditions for Internet-style networks with multi-source multi-link topology. We first prove the stability for a class of nonlinear time-delay systems. Then, we apply the results to a Kelly’s rate-based approximation of the congestion control system.
[1] Alpcan, T., Basar, T., 2005. A globally stable adaptive congestion control scheme for Internet-style networks with delay. IEEE/ACM Trans. Netw., 13(6):1261-1274.
[2] Deb, S., Srikant, R., 2003. Global stability of congestion controllers for the Internet. IEEE Trans. Automat. Control, 48(6):1055-1060.
[3] Fan, M., Zou, X., 2004. Global asymptotic stability of a class of nonautonomous integro-differential systems and applications. Nonl. Anal., 57(1):111-135.
[4] Fan, X., Arcak, M., Wen, J.T., 2004. Robustness of network flow control against disturbances and time-delay. Syst. Control Lett., 53(1):13-29.
[5] Gao, H., Lam, J., Wang, C., Guan, X.P., 2005. Further results on local stability of REM algorithm with time-varying delays. IEEE Commun. Lett., 9(5):402-404.
[6] Guo, S.T., Liao, X.F., Li, C.D., Yang, D.G., 2007. Stability analysis of a novel exponential-RED model with heterogeneous delays. Comput. Commun., 30(5):1058-1074.
[7] Hale, J.K., Lunel, S.M.V., 1993. Introduction to Functional Differential Equations. Springer-Verlag, New York, USA.
[8] Johari, R., Tan, D., 2001. End-to-end congestion control for the Internet: delays and stability. IEEE/ACM Trans. Netw., 9(6):818-832.
[9] Kelly, F.P., 2000. Models for a self-managed Internet. Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci., 358(1773):2335-2348.
[10] Kelly, F.P., Maulloo, A.K., Tan, D.K.H., 1998. Rate control in communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc., 49(3):237-252.
[11] Liu, S., Basar, T., Srikant, R., 2005. Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols. IEEE/ACM Trans. Netw., 13(5):1068-1081.
[12] Long, C.N., Wu, J., Guan, X.P., 2003. Local stability of REM algorithm with time-varying delays. IEEE Commun. Lett., 7(3):142-144.
[13] Low, S.H., Lapsley, D.E., 1999. Optimization flow control: I. basic algorithm and convergence. IEEE/ACM Trans. Netw., 7(6):861-874.
[14] Low, S.H., Paganini, F., Doyle, J.C., 2002. Internet congestion control. IEEE Control Syst. Mag., 22(1):28-43.
[15] Massoulie, L., 2002. Stability of distributed congestion control with heterogeneous feedback delays. IEEE Trans. Automat. Control, 47(6):895-902.
[16] Mazenc, F., Niculescu, S.I., 2003. Remarks on the Stability of a Class of TCP-like Congestion Control Models. Proc. IEEE Conf. on Decision and Control, p.5591-5594.
[17] Paganini, F., 2002. A global stability result in network flow control. Syst. Control Lett., 46(3):165-172.
[18] Paganini, F., Wang, Z., Doyle, J.C., Low, S.H., 2005. Congestion control for high performance, stability and fairness in general networks. IEEE/ACM Trans. Netw., 13(1):43-56.
[19] Papachristodoulou, A., Doyle, J.C., Low, S.H., 2004. Analysis of Nonlinear Delay Differential Equation Models of TCP/AQM Protocols Using Sums of Squares. Proc. IEEE Conf. on Decision and Control, p.4684-4689.
[20] Peet, M., Lall, S., 2007. Global stability analysis of a nonlinear model of Internet congestion control with delay. IEEE Trans. Automat. Control, 52(3):553-559.
[21] Ranjan, P., Abed, E.H., La, R.J., 2004. Nonlinear instabilities in TCP-RED. IEEE/ACM Trans. Netw., 12(6):1079-1092.
[22] Ranjan, P., La, R.J., Abed, E.H., 2006. Global stability conditions for rate control with arbitrary communication delays. IEEE/ACM Trans. Netw., 14(1):94-107.
[23] Shakkottai, S., Srikant, R., 2004. Mean FDE models for Internet congestion control under a many-flows regime. IEEE Trans. Inf. Theory, 50(6):1050-1072.
[24] Slotine, J.J.E., Li, W., 1991. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ, p.123.
[25] Srikant, R., 2004. The Mathematics of Internet Congestion Control. Birkhauser, Cambridge, MA, p.40-47.
[26] Tan, L., Zhang, W., Peng, G., Chen, G., 2006. Stability of TCP/RED systems in AQM routers. IEEE Trans. Automat. Control, 51(8):1393-1398.
[27] Tian, Y.P., 2005a. A general stability criterion for congestion control with diverse communication delays. Automatica, 41(7):1255-1262.
[28] Tian, Y.P., 2005b. Stability analysis and design of the second-order congestion control for networks with heterogeneous delays. IEEE/ACM Trans. Netw., 13(5):1082-1093.
[29] Vinnicombe, G., 2000. On the Stability of End-to-End Congestion Control for the Internet. Technical Report No. CUED/F-INFENG/TR.398, University of Cambridge, Cambridge, UK, p.1-6.
[30] Wang, Z., Paganini, F., 2006. Boundedness and global stability of a nonlinear congestion control with delays. IEEE Trans. Automat. Control, 51(9):1514-1519.
[31] Wen, J.T., Arcak, M., 2004. A unifying passivity framework for network flow control. IEEE Trans. Automat. Control, 49(2):162-174.
[32] Ying, L., Dullerud, G.E., Sirkant, R., 2006. Global stability of Internet congestion controllers with heterogeneous delay. IEEE/ACM Trans. Netw., 14(3):579-591.
[33] Zhang, Y., Loguinov, D., 2008. Local and global stability of delayed congestion control system. IEEE Trans. Automat. Control, 53(10):2356-2360.
[34] Zhang, Y., Kang, S.R., Loguinov, D., 2007. Delay-independent stability and performance of distributed congestion control. IEEE/ACM Trans. Netw., 15(4):838-851.
Open peer comments: Debate/Discuss/Question/Opinion
<1>