Full Text:   <172>

Summary:  <44>

CLC number: O439

On-line Access: 2020-06-12

Received: 2019-09-28

Revision Accepted: 2020-02-24

Crosschecked: 2020-03-17

Cited: 0

Clicked: 279

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei Zhao

https://orcid.org/0000-0002-5009-5816

Xin Wang

https://orcid.org/0000-0003-1102-1301

Hua Liu

https://orcid.org/0000-0003-1455-8948

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.6 P.884-902

10.1631/FITEE.1900529


Development of space-based diffractive telescopes


Author(s):  Wei Zhao, Xin Wang, Hua Liu, Zi-feng Lu, Zhen-wu Lu

Affiliation(s):  School of Science, Changchun University of Science and Technology, Changchun 130022, China; more

Corresponding email(s):   wangxin971241@163.com, liuhua_rain@aliyun.com

Key Words:  Membrane diffractive optical elements, Diffractive telescope, Super large aperture


Wei Zhao, Xin Wang, Hua Liu, Zi-feng Lu, Zhen-wu Lu. Development of space-based diffractive telescopes[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(6): 884-902.

@article{title="Development of space-based diffractive telescopes",
author="Wei Zhao, Xin Wang, Hua Liu, Zi-feng Lu, Zhen-wu Lu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="6",
pages="884-902",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900529"
}

%0 Journal Article
%T Development of space-based diffractive telescopes
%A Wei Zhao
%A Xin Wang
%A Hua Liu
%A Zi-feng Lu
%A Zhen-wu Lu
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 6
%P 884-902
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900529

TY - JOUR
T1 - Development of space-based diffractive telescopes
A1 - Wei Zhao
A1 - Xin Wang
A1 - Hua Liu
A1 - Zi-feng Lu
A1 - Zhen-wu Lu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 6
SP - 884
EP - 902
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900529


Abstract: 
membrane diffractive optical elements formed by fabricating microstructures on the substrates have two important characteristics, ultra-light mass (surface mass density < 0.1 kg/m2) and loose surface shape tolerances (surface accuracy requirements are on the order of magnitude of centimeter). Large-aperture telescopes using a membrane diffractive optical element as the primary lens have super large aperture, light weight, and low cost at launch. In this paper, the research and development on space-based diffractive telescopes are classified and summarized. First, the imaging theory and the configuration of diffractive-optics telescopes are discussed. Then, the developments in diffractive telescopes are introduced. Finally, the development prospects for this technology used as a high-resolution space reconnaissance system in the future are summarized, and the critical and relevant work that China should carry out is put forward.

空间衍射望远系统发展现状

赵维1,3,4,王新1,刘华2,4,陆子凤2,4,卢振武5
1长春理工大学理学院,中国长春市,130022
2东北师范大学物理学院,中国长春市,130024
3吉林警察学院,中国长春市,130117
4中国科学院西安光学精密机械研究所光谱成像技术重点实验室,中国西安市,710119
5中国科学院长春光学精密机械与物理研究所,中国长春市,130024

摘要:基底微结构制作的薄膜衍射光学元件具备超轻质量(面密度小于0.1 kg/m2)和宽松表面形状公差(厘米级表面精度需求)两个重要特性,将其作为大口径望远镜的主镜可实现超大口径,超轻量化,同时降低发射成本。本文对国内外基于衍射光学的空间大口径望远系统的研究进展进行归纳和总结。首先阐述衍射望远系统的成像理论与组成结构,然后介绍衍射望远系统研究进展,最后总结衍射技术作为未来高分辨率空间侦查系统的发展趋势,提出我国应着重开展的相关工作。

关键词:薄膜衍射光学元件;衍射望远系统;超大口径

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Allen L, Angel R, Mangus JD, et al., 1990. The Hubble Space Telescope Optical Systems Failure Report. NASA-TM- 103 443, NASA (National Aeronautics and Space Administration), Washington, USA.

[2]Andersen G, 2010. Membrane photon sieve telescopes. Appl Opt, 49(33):6391-6394.

[3]Andersen G, Asmolova O, 2014. FalconSAT-7: a membrane space telescope. SPIE Astronomical Telescopes + Instrumentation, Article 91431X.

[4]Andersen G, Tullson D, 2007. Broadband antihole photon sieve telescope. Appl Opt, 46(18):3706-3708.

[5]Andersen G, Asmolov O, Dearborn ME, et al., 2012. FalconSAT-7: a membrane photon sieve CubeSat solar telescope. SPIE Astronomical Telescopes + Instrumentation, Article 84421C.

[6]Apai D, Milster TD, Kim DW, et al., 2019. A thousand earths: a very large aperture, ultralight space telescope array for atmospheric biosignature surveys. https://arxiv.org/abs/1906.05079

[7]Asmolova O, Andersen G, Dearborn ME, et al., 2014. Optical testing of a membrane diffractive optic for space-based solar imaging. SPIE OPTO, Article 90060D.

[8]Atcheson P, Stewart C, Domber J, et al., 2012. MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes. SPIE Space Telescopes and Instrumentation, Article 844221.

[9]Atcheson P, Domber J, Whiteaker K, et al., 2014. MOIRE: ground demonstration of a large aperture diffractive transmissive telescope. SPIE Astronomical Telescopes and Instrumentation, Article 91431W.

[10]Buralli DA, Morris GM, 1989. Design of a wide field diffractive landscape lens. Appl Opt, 28(18):3950-3959.

[11]Buralli DA, Morris GM, 1992. Design of two- and three- element diffractive Keplerian telescopes. Appl Opt, 31(1): 38-43.

[12]Chen WT , Zhu AY, Sanjeev V, et al., 2018. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol, 13(3):220-226.

[13]Cheng YG, Tong JM, Zhu JP, et al., 2016. Clad photon sieve for generating localized hollow beams. Opt Laser Eng, 77:18-25.

[14]Chichkov BN, Momma C, Nolte S, et al., 1996. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A, 63(2):109-115.

[15]Clampin M, 2012. Status of the James Webb Space Telescope observatory. SPIE Astronomical Telescopes and Instrumentation, Article 84422A.

[16]Cox JA, 1995. Application of diffractive optics to infrared imagers. SPIE Int Symp on Optical Science, Engineering, and Instrumentation, p.304-312.

[17]DARPA (Defense Advanced Research Projects Agency), 2010. Membrane Optical Imager for Real-Time Exploitation (MOIRE). https://www.richardcyoung.com/terrorism/membraneoptical-imager-for-real-time-exploitation-moire/ [Accessed on Mar. 17, 2020].

[18]Domber JL, Atcheson PD, Kommers J, 2014. MOIRE: ground test bed results for a large membrane telescope. Spacecraft Structures Conf, Article 1510.

[19]Du K, Yin KW, Li H, et al., 2013. Design and analysis of a novel self-deployable baffle. 5th Int Symp on Photoelectronic Detection and Imaging, Article 890758.

[20]Dunsmore A, McHarg M, 2014. FalconSat-7—a deployable solar telescope. 28th Annual AIAA/USU Conf on Small Satellites, Article SSC14-III-1.

[21]Early JT, Hyde R, Baron RL, 2004. Twenty-meter space telescope based on diffractive Fresnel lens. SPIE’s 48th Annual Meeting: Optical Science and Technology, Article 5166.

[22]Faklis D, Morris GM, 1989. Broadband imaging with holographic lenses. Opt Eng, 28(6):286592.

[23]Fan CJ, Zhao YH, Ying CF, et al., 2012. Multilayer diffraction element with wide field of view and high diffractive efficiency. Chinese Journal of Lasers, 39(5):232-236 (in Chinese).

[24]Feinberg LD, 2004. James Webb Space Telescope (JWST) Optical Telescope Element (OTE) development status. SPIE Astronomical Telescopes and Instrumentation, p.814-817.

[25]Freedman WL, Madore BF, Gibson BK, et al., 2001. Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys J, 553(1):47-72.

[26]Freese K, Ilie C, Spolyar D, et al., 2010. Supermassive dark stars: detectable in JWST. Astrophys J, 716(2):1397- 1407.

[27]Fujita T, Nishihara H, Koyama J, 1982. Blazed gratings and Fresnel lenses fabricated by electron-beam lithography. Opt Lett, 7(12):578-580.

[28]Gale MT, Knop K, 1983. The fabrication of fine lens arrays by laser beam writing. SPIE Int Technical Conf/Europe, p.347-353.

[29]Gao Z, Ma XJ, Zhou CX, et al., 2007. Off-axis imaging of photon sieve with large aperture. Opto-Electronic Engineering, 34(9):25-29 (in Chinese).

[30]Gardner JP, Mather JC, Clampin M, et al., 2006. The James Webb Space Telescope. Space Sci Rev, 123(4):485-606.

[31]Guo CL, Zhang ZY, Xue DL, et al., 2018. High-performance etching of multilevel phase-type Fresnel zone plates with large apertures. Opt Commun, 407:227-233.

[32]Herzig HP, 1997. Micro-Optics: Elements, Systems and Applications. CRC Press, Taylor & Francis Group, London, UK.

[33]Hinglais E, 2011. A space Fresnel imager concept assessment study led by CNES for astrophysical applications. Exp Astron, 30:85.

[34]Hudyma RM, Kampe TU, 1992. Hybrid refractive/diffractive elements in lenses for staring focal-plane arrays. SPIE Aerospace Sensing, p.80-91.

[35]Hufnagel RE, 1985. Achromatic Holographic Optical System. US Patent 4 550 973.

[36]Hyde RA, 1999. Eyeglass. 1. very large aperture diffractive telescopes. Appl Opt, 38(19):4198-4212.

[37]Hyde RA, Dixit SN, Weisberg AH, et al., 2002. Eyeglass: a very large aperture diffractive space telescope. SPIE Astronomical Telescopes and Instrumentation, p.28-39.

[38]Jiao J, Wang B, Wang C, et al., 2017. Study on high resolution membrane-based diffractive optical imaging on geostationary orbit. Int Arch Photogr Remote Sens Spat Inform Sci, XLII-1/W1:371-375.

[39]Jin G, Yan JL, Liu H, et al., 2014. Flat-stitching error analysis of large-aperture photon sieves. Appl Opt, 53(1):90-95.

[40]Jin GF, Yan YB, Wu MX, 1998. Binary Optics. National Defence Industry Press, Beijing, China (in Chinese).

[41]Kawata S, Sun HB, Tanaka T, et al., 2001. Finer features for functional microdevices. Nature, 412:697-698.

[42]Koechlin L, Serre D, Deba P, et al., 2009. The fresnel interferometric imager. Exp Astron, 23(1):379-402.

[43]Koechlin L, Rivet JP, Deba P, et al., 2011. Generation 2 testbed of Fresnel imager: first results on the sky. Exp Astron, 30(2):165-182.

[44]Koechlin L, Rivet JP, Deba P, et al., 2012. First high dynamic range and high resolution images of the sky obtained with a diffractive Fresnel array telescope. Exp Astron, 33(1): 129-140.

[45]Koechlin L, Yadallee M, Raksasataya T, et al., 2014. New progress on the Fresnel imager for UV space astronomy. Astrophys Space Sci, 354(1):147-153.

[46]Li FY, Lu ZW, Xie YJ, et al., 2002a. Laser direct writing system with Cartesian and polar coordinate. Acta Photon Sin, 31(5):616-619.

[47]Li FY, Lu ZW, Xie YJ, et al., 2002b. Photolithographic fabrication techniques by using defocusing laser direct writing. China J Lasers, 29(9):850-854 (in Chinese).

[48]Li K, Guo YH, Pu MB, et al., 2017. Dispersion controlling meta-lens at visible frequency. Opt Expr, 25(18):21419- 21427.

[49]Li YY, Qiu CK, Li P, et al., 2010. Shape the unstable laser beam using diffractive optical element array. SPIE Photonics Asia, Article 78481X.

[50]Liu D, Wang LH, Yang W, et al., 2018. Stray light characteristics of the diffractive telescope system. Opt Eng, 57(2): 025105.

[51]Liu H, Lu ZW, Yue JY, et al., 2008. The characteristics of compound diffractive telescope. Opt Expr, 16(20):16195- 16201.

[52]Liu H, Lu ZW, Yan Y, 2013. Large aperture diffractive telescope tolerance analysis and measurement. Acta Photon Sin, 42(10):1203-1207 (in Chinese).

[53]Liu MZ, Liu H, Xu WB, et al., 2014. Membrane photon sieve for space telescope. Opt Prec Eng, 22(8):2127-2134 (in Chinese).

[54]Lu ZW, Zhang N, Liu H, et al., 2006. Compound telescope. SPIE Optics + Photonics, Article 628910.

[55]Lv HR, Lu XQ, Han YS, et al., 2019. Multifocal metalens with a controllable intensity ratio. Opt Lett, 44(10):2518-2521.

[56]McClure ER, 1991. Manufacturers turn precision optics with diamond. Laser Focus World, 27(2):95-105.

[57]Nakai T, Ogawa H, 2002. Research on multi-layer diffractive optical elements and their application to camera lenses. In: Magnusson R (Ed.), Diffractive Optics and Micro-Optics. Optical Society of America, USA, Article DMA2.

[58]Piqué A, Chrisey DB, Auyeung RCY, et al., 1999. A novel laser transfer process for direct writing of electronic and sensor materials. Appl Phys A, 69(1):S279-S284.

[59]Qin F, Hong MH, Cao YY, et al., 2017. Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses. Acta Phys Sin, 66(14):88-102 (in Chinese).

[60]Ren ZB, Hu JS, Tang HL, et al., 2017a. Study on chromatic aberration correction of 10 meter large aperture membrane diffractive primary lens. Acta Photon Sin, 46(4):29- 34 (in Chinese).

[61]Ren ZB, Hu JS, Tang HL, et al., 2017b. Optimization method of electro-optical imaging system based on information distortion. J Appl Opt, 38(5):689-693 (in Chinese).

[62]Ren ZB, Hu JS, Tang HL, et al., 2018. Solving method of object data based on imaging matrix. J Appl Opt, 39(1):40-44 (in Chinese).

[63]Sanders GH, 2013. The Thirty Meter Telescope (TMT): an international observatory. J Astrophys Astron, 34(2):81-86.

[64]Schupmann L, 1899. Die Medial-Fernrohre: Eine Neue Konstruktion für Grosse Astronomische Instrumente. Druck and Verlag von B.G. Teubner, Leipzig, Germany (in German).

[65]Serre D, Koechlin L, Deba P, 2007. Fresnel interferometric arrays for space-based imaging: testbed results. SPIE Optical Engineering + Applications, Article 66870I.

[66]Shrestha S, Overvig AC, Lu M, et al., 2018. Broadband achromatic dielectric metalenses. Light Sci Appl, 7:85.

[67]Smith RW, Canas RG, West AA, 1989. Electron beam writing of binary and optical writing of blazed diffractive optical elements. SPIE OE/LASE’89, p.77-84.

[68]Sweeney DW, Sommargren GE, 1995. Harmonic diffractive lenses. Appl Opt, 34(14):2469-2475.

[69]Tandy W, Atcheson P, Domber J, et al., 2012. MOIRE gossamer space telescope—structural challenges and solutions. Proc 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf, Article 1670.

[70]Waller D, Campbell L, Domber JL, et al., 2015. MOIRE primary diffractive optical element structure deployment testing. Proc 2nd AIAA Spacecraft Structures Conf, Article 1836.

[71]Wang LH, Wu SB, Yang W, et al., 2016. Analysis of stitched Fresnel lens segmented mirrors miss-adjustment error. Acta Opt Sin, 36(7):146-153 (in Chinese).

[72]Wang RQ, Zhang ZY, Guo CL, et al., 2016. Effects of fabrication errors on diffraction efficiency for a diffractive membrane. Chin Opt Lett, 14(12):120501.

[73]Wang RQ, Zhang ZY, Xue DL, et al., 2017a. Large-diameter high-efficiency diffractive Fresnel membrane elements for space telescope. Infr Laser Eng, 46(9):123-130 (in Chinese).

[74]Wang RQ, Zhang ZY, Guo CL, et al., 2017b. Design/fabri- cation and performance test of a diffractive telescope system with high diffraction efficiency. Acta Photon Sin, 46(3):120-128 (in Chinese).

[75]Wang S, Yang W, Wu SB, 2013. Effect of fabrication errors on binary optical element imaging quality. 5th Int Symp on Photoelectronic Detection and Imaging, Article 89110O.

[76]Wang TS, Liu H, Zhang H, et al., 2010. Evaluation of the imaging performance of hybrid refractive-diffractive systems using the modified phase function model. J Opt, 12(4):045705.

[77]Wang TS, Liu H, Zhang H, et al., 2011. Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems. J Opt, 13(3):035711.

[78]Wang YQ, 2015. Study on Principle and Methods of Imaging with Micro-Nano Structures. PhD Thesis, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China (in Chinese).

[79]Wen LH, Yang P, Yang KJ, et al., 2017a. Experiments of the aberrations correction for membrane Fresnel lens based on wavefront sensorless. Acta Photon Sin, 46(10):99-105 (in Chinese).

[80]Wen LH, Yang P, Yang KJ, et al., 2017b. Synchronous model-based approach for wavefront sensorless adaptive optics system. Opt Expr, 25(17):20584-20597.

[81]Wen LH, Yang P, Wang S, et al., 2018. A high speed model-based approach for wavefront sensorless adaptive optics systems. Opt Laser Technol, 99:124-132.

[82]Williams RE, Blacker B, Dickinson M, et al., 1996. The Hubble deep field: observations, data reduction, and galaxy photometry. Astron J, 112:1335.

[83]Wood AP, 1990. Using hybrid refractive-diffractive elements in infrared Petzval objectives. Int Lens Design Conf, p.316-322.

[84]Yang W, Wu SB, Wang LH, et al., 2017. Research advances and key technologies of macrostructure membrane telescope. Opto-Electron Eng, 44(5):475-482 (in Chinese).

[85]Yao N, Wang CT, Tao X, et al., 2013. Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure. Nanotechnology, 24(13): 135203.

[86]Yin KW, Huang ZQ, Lin WM, et al., 2012. Design and analysis of diffractive optical elements for flattening of single modal Gaussian beams. 6th Int Symp on Advanced Optical Manufacturing and Testing Technologies, Article 84180Q.

[87]Yu XH, Zhang QW, Qi DF, et al., 2020. Femtosecond laser-induced large area of periodic structures on chalcogenide glass via twice laser direct-writing scanning process. Opt Laser Technol, 124:105977.

[88]Yue JY, Lu ZW, Liu H, et al., 2009. Imaging analysis of a novel compound diffractive telescope system. SPIE Optical Engineering + Applications, Article 74260Z.

[89]Yue JY, Liu H, Lu ZW, et al., 2010. Compound diffractive telescope system: design, stray light analysis, and optical test. Chin Phys B, 19(1):010702.

[90]Zhang H, Liu H, Lu ZW, et al., 2008. Modified phase function model for kinoform lenses. Appl Opt, 47(22):4055-4060.

[91]Zhang HL, Liu H, Xu WB, et al., 2017a. Error analysis of large-diameter subaperture stitching Fresnel diffractive elements. Appl Opt, 56(27):7672-7678.

[92]Zhang HL, Liu H, Lizana A, et al., 2017b. Methods for the performance enhancement and the error characterization of large diameter ground-based diffractive telescopes. Opt Expr, 25(22):26662-26677.

[93]Zhang J, Li MJ, Yin GH, et al., 2016a. Low-cost method of fabricating large-aperture, high efficiency, Fresnel diffractive membrane optic using a modified Moiré technique. Chin Opt Lett, 14(10):100501.

[94]Zhang J, Li MJ, Yin GH, et al., 2016b. Fabrication of large- aperture and high efficiency Fresnel diffractive membrane optic using a self-aligned method. Optik, 127(20): 9833-9839.

[95]Zhang N, Lu ZW, Li FY, 2007. Optical design of diffractive telescope. Infr Laser Eng, 36(1):106-108 (in Chinese).

[96]Zhang YM, 2008. Applied Optics (3rd Ed.). Publishing House of Electronics Industry, Beijing, China (in Chinese).

[97]Zhang ZY, Guo CL, Wang RQ, et al., 2017. Hybrid-level Fresnel zone plate for diffraction efficiency enhancement. Opt Expr, 25(26):33676-33687.

[98]Zhao LP, Wu MX, Jin GF, et al., 1998. Harmonic diffractive optical element and its application. SPIE Photonics China, p.184-190.

[99]Zhao XN, Xu F, Hu JP, et al., 2015. Broadband photon sieves imaging with wavefront coding. Opt Expr, 23(13):16812- 16822.

[100]Zhao XN, Hu JP, Lin Y, et al., 2016. Ultra-broadband achromatic imaging with diffractive photon sieves. Sci Rep, 6:28319.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE