CLC number: TN99
On-line Access: 2021-09-10
Received: 2020-06-09
Revision Accepted: 2020-11-17
Crosschecked: 2021-08-24
Cited: 0
Clicked: 5217
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-8018-7236
https://orcid.org/0000-0002-2615-9349
https://orcid.org/0000-0003-3057-7890
Xingye Fan, Ruozhou Li, Jing Yan, Yuming Fang, Ying Yu. Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(9): 1270-1276.
@article{title="Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator",
author="Xingye Fan, Ruozhou Li, Jing Yan, Yuming Fang, Ying Yu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="9",
pages="1270-1276",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000278"
}
%0 Journal Article
%T Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator
%A Xingye Fan
%A Ruozhou Li
%A Jing Yan
%A Yuming Fang
%A Ying Yu
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 9
%P 1270-1276
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000278
TY - JOUR
T1 - Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator
A1 - Xingye Fan
A1 - Ruozhou Li
A1 - Jing Yan
A1 - Yuming Fang
A1 - Ying Yu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 9
SP - 1270
EP - 1276
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000278
Abstract: A tunable stepped-impedance resonator using liquid crystal is demonstrated. Two resonant frequencies at 3.367 and 7.198 GHz are realized and can be continuously tuned by external applied voltages. Continuous tunable ranges of 52 and 210 MHz have been achieved at a particularly low driving voltage of 14 V, which shows good agreement with the simulation results. The voltage-induced hysteresis phenomenon is also investigated. This device also has a low insertion loss of −2.9 and −4 dB for the two resonant frequencies and the return losses are less than −21.5 dB. This work provides a new protocol to realize a tunable frequency for communication systems.
[1]Algorri JF, Urruchi V, García-Cámara B, et al., 2016. Liquid crystal microlenses for autostereoscopic displays. Materials, 9(1):36.
[2]Bi XK, Zhang X, Wong SW, et al., 2020. Design of notched-wideband bandpass filters with reconfigurable bandwidth based on terminated cross-shaped resonators. IEEE Access, 8:37416-37427.
[3]Cai T, Liu QK, Shi YC, et al., 2010. An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide. Appl Phys Lett, 97(12):121109.
[4]Huang T, Jiang D, Shao ZH, 2014. Research of a novel bandpass filter using nematic liquid crystal loaded by inverted microstrip. IEEE Int Conf on Communication Problem-Solving, p.514-516.
[5]Jiang D, Liu YP, Li XY, et al., 2019. Tunable microwave bandpass filters with complementary split ring resonator and liquid crystal materials. IEEE Access, 7:126265-126272.
[6]Liu XG, Katehi LPB, Chappell WJ, et al., 2009. A 3.4–6.2 GHz continuously tunable electrostatic MEMS resonator with quality factor of 460–530. IEEE MTT-S Int Microwave Symp Digest, p.1149-1152.
[7]Liu YP, Jiang D, Cao WP, et al., 2016. Microwave tunable split ring resonator bandpass filter using nematic liquid crystal materials. Optik, 127(21):10216-10222.
[8]Makimoto M, Yamashita S, 1980. Bandpass filters using parallel coupled strip-line stepped impedance resonators. IEEE MTT-S Int Microwave Symp Digest, p.141-143.
[9]Maune B, Lawson R, Gunn G, et al., 2003. Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers. Appl Phys Lett, 83(23):4689-4691.
[10]Mirfatah A, Laurin JJ, 2009. Tunable hairpin resonator based on liquid crystal. Proc 13th Int Symp on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, p.6-9.
[11]Navarro JA, Chang K, 1993. Varactor-tunable uniplanar ring resonators. IEEE Trans Microw Theory Techn, 41(5):760-766.
[12]Sanada A, Takehara H, Yamamoto T, et al., 2002. λ/4 stepped-impedance resonator bandpass filters fabricated on coplanar waveguide. IEEE MTT-S Int Microwave Symp Digest, p.385-388.
[13]Semenov AA, Karmanenko SF, Demidov VE, et al., 2006. Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave resonators. Appl Phys Lett, 88(3):033503.
[14]Shi ZD, Fang L, Zhong LB, 2017. MEMS-based filter integrating tunable Fabry-Perot cavity and grating. Opt Commun, 402:472-477.
[15]Simons RN, Ponchak GE, 1988. Modeling of some coplanar waveguide discontinuities. IEEE MTT-S Int Microwave Symp Digest, p.297-300.
[16]Stefanini R, Martinez JD, Chatras M, et al., 2011. Ku band high-Q tunable surface-mounted cavity resonator using RF MEMS varactors. IEEE Microw Wirel Compon Lett, 21(5):237-239.
[17]Teng C, Cheong P, Tarn KW, 2019. Reconfigurable wideband bandpass filters based on dual cross-shaped resonator. IEEE MTT-S Int Wireless Symp, p.1-3.
[18]Ustinov AB, Tiberkevich VS, Srinivasan G, et al., 2006. Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: experiment and theory. J Appl Phys, 100(9):093905.
[19]Yaghmaee P, Fumeaux C, Bates B, et al., 2012a. Frequency tunable S-band resonator using nematic liquid crystal. Electron Lett, 48(13):798-800.
[20]Yaghmaee P, Horestani AK, Bates B, et al., 2012b. A multi-layered tunable stepped-impedance resonator for liquid crystal characterization. Asia Pacific Microwave Conf Proc, p.776-778.
[21]Yaghmaee P, Karabey OH, Bates B, et al., 2013. Electrically tuned microwave devices using liquid crystal technology. Int J Antenn Propag, 2013:824214.
[22]Yang DK, Wu ST, 2006. Effects of electric field on liquid crystals. In: Yang DK, Wu ST (Eds.), Fundamentals of Liquid Crystal Devices. John Wiley, Chichester, p.107-112.
Open peer comments: Debate/Discuss/Question/Opinion
<1>