Full Text:   <4845>

Summary:  <1346>

CLC number: TP391.9

On-line Access: 2021-10-08

Received: 2020-07-02

Revision Accepted: 2020-11-04

Crosschecked: 2021-08-12

Cited: 0

Clicked: 5766

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ning Ding

https://orcid.org/0000-0001-5618-6359

Huihuan Qian

https://orcid.org/0000-0001-8269-0882

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.10 P.1351-1369

http://doi.org/10.1631/FITEE.2000312


Crowd modeling based on purposiveness and a destination-driven analysis method


Author(s):  Ning Ding, Weimin Qi, Huihuan Qian

Affiliation(s):  Institute of Robotics and Intelligence Manufacturing, the Chinese University of Hong Kong, Shenzhen 518172, China; more

Corresponding email(s):   hhqian@cuhk.edu.cn

Key Words:  Crowd modeling, Intelligent video surveillance, Crowd stability


Ning Ding, Weimin Qi, Huihuan Qian. Crowd modeling based on purposiveness and a destination-driven analysis method[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(10): 1351-1369.

@article{title="Crowd modeling based on purposiveness and a destination-driven analysis method",
author="Ning Ding, Weimin Qi, Huihuan Qian",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="10",
pages="1351-1369",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000312"
}

%0 Journal Article
%T Crowd modeling based on purposiveness and a destination-driven analysis method
%A Ning Ding
%A Weimin Qi
%A Huihuan Qian
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 10
%P 1351-1369
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000312

TY - JOUR
T1 - Crowd modeling based on purposiveness and a destination-driven analysis method
A1 - Ning Ding
A1 - Weimin Qi
A1 - Huihuan Qian
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 10
SP - 1351
EP - 1369
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000312


Abstract: 
This study focuses on the multiphase flow properties of crowd motions. Stability is a crucial forewarning factor for the crowd. To evaluate the behaviors of newly arriving pedestrians and the stability of a crowd, a novel motion structure analysis model is established based on purposiveness, and is used to describe the continuity of pedestrians’ pursuing their own goals. We represent the crowd with self-driven particles using a destination-driven analysis method. These self-driven particles are trackable feature points detected from human bodies. Then we use trajectories to calculate these self-driven particles’ purposiveness and select trajectories with high purposiveness to estimate the common destinations and the inherent structure of the crowd. Finally, we use these common destinations and the crowd structure to evaluate the behavior of newly arriving pedestrians and crowd stability. Our studies show that the purposiveness parameter is a suitable descriptor for middle-density human crowds, and that the proposed destination-driven analysis method is capable of representing complex crowd motion behaviors. Experiments using synthetic and real data and videos of both human and animal crowds have been conducted to validate the proposed method.

基于目的性的人群建模和目标驱动分析方法

丁宁1,3,祁卫敏2,3,钱辉环2,3
1香港中文大学(深圳)机器人与智能制造研究院,中国深圳市,518172
2深圳市人工智能与机器人研究院,中国深圳市,518172
3香港中文大学(深圳)理工学院,中国深圳市,518172
摘要:本文主要研究人群运动的多相流特性。稳定性是人群的一个重要预警因素。为评价新到达行人的行为和人群的稳定性,建立一种基于目的性的运动结构分析模型,用于描述行人追求自身目标的连续性。使用目标驱动分析方法,用自驱动粒子表示人群。这些自驱动粒子是人体图像的可跟踪特征点。然后,利用轨迹计算这些自驱动粒子的目的性,并选择高目的性轨迹估计公共目的地和人群内在结构。最后,利用这些公共目的地和人群结构评估新到达行人的行为和人群稳定性。研究表明,目的性参数是一个适于描述中等密度人群的描述符,提出的目标驱动分析方法能够描述复杂人群运动行为。使用合成和真实的人类以及动物群体数据与视频,验证了所提方法的有效性。

关键词:人群建模;智能视频监控;人群稳定性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ali S, Shah M, 2007. A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. IEEE Conf on Computer Vision and Pattern Recognition, p.1-6.

[2]Anh NTN, Daniel ZJ, Du NH, et al., 2011. A hybrid macro-micro pedestrians evacuation model to speed up simulation in road networks. Int Conf on Autonomous Agents and Multiagent Systems, p.371-383.

[3]Bladel J, 1959. On Helmholtz’s theorem in finite regions. IRE Trans Antenn Propag, 7(5):119.

[4]Brennen CE, 2005. Fundamentals of Multiphase Flow. Cambridge University Press, Cambridge, UK, p.386.

[5]Brostow GJ, Cipolla R, 2006. Unsupervised Bayesian detection of independent motion in crowds. IEEE Conf on Computer Vision and Pattern Recognition, p.594-601.

[6]Cao T, Wu XY, Guo JN, et al., 2009. Abnormal crowd motion analysis. IEEE Int Conf on Robotics and Biomimetics, p.1709-1714.

[7]Dabrowski M, Krotkiewski M, Schmid DW, 2008. Milamin: Matlab-based finite element method solver for large problems. Geochem Geophys Geosyst, 9(4):Q04030.

[8]Helbing D, Farkas IJ, Molnar P, et al., 2002. Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg M, Sharma SD (Eds.), Pedestrian and Evacuation Dynamics. Springer, Berlin, p.21-58.

[9]Helmuth JA, Burckhardt CJ, Koumoutsakos P, et al., 2007. A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells. J Struct Biol, 159(3):347-358.

[10]Huet S, Karatekin E, Tran VS, et al., 2006. Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics. Biophys J, 91(9):3542-3559.

[11]Ihaddadene N, Djeraba C, 2008. Real-time crowd motion analysis. 19th Int Conf on Pattern Recognition, p.1-4.

[12]Ijaz K, Sohail S, Hashish S, 2015. A survey of latest approaches for crowd simulation and modeling using hybrid techniques. 17th UKSIM-AMSS Int Conf on Modelling and Simulation, p.111-116.

[13]Karnik A, Goswami S, Guha R, 2007. Detecting obfuscated viruses using cosine similarity analysis. 1st Asia Int Conf on Modelling and Simulation, p.165-170.

[14]Mehran R, Oyama A, Shah M, 2009. Abnormal crowd behavior detection using social force model. IEEE Conf on Computer Vision and Pattern Recognition, p.935-942.

[15]Muchoney D, Williamson J, 2001. A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data. IEEE Trans Geosci Remote Sens, 39(9):1969-1977.

[16]Naseer T, Burgard W, Stachniss C, 2018. Robust visual localization across seasons. IEEE Trans Rob, 34(2):289-302.

[17]Nurgaliev D, McDonald M, Benson B, et al., 2013. A robust quantification of galaxy cluster morphology using asymmetry and central concentration. Astrophys J, 779(2):112.

[18]Patil S, van den Berg J, Curtis S, et al., 2010. Directing crowd simulations using navigation fields. IEEE Trans Vis Comput Graph, 17(2):244-254.

[19]Rabaud V, Belongie S, 2006. Counting crowded moving objects. IEEE Conf on Computer Vision and Pattern Recognition, p.705-711.

[20]Rodriguez M, Sivic J, Laptev I, et al., 2011. Data-driven crowd analysis in videos. Int Conf on Computer Vision, p.1235-1242.

[21]Shi JB, Tomasi C, 1994. Good features to track. IEEE Conf on Computer Vision and Pattern Recognition, p.593-600.

[22]Shiwakoti N, Sarvi M, Burd M, 2014. Using non-human biological entities to understand pedestrian crowd behaviour under emergency conditions. Safety Sci, 66:1-8.

[23]Sreenu G, Durai MAS, 2019. Intelligent video surveillance: a review through deep learning techniques for crowd analysis. J Big Data, 6(1):48.

[24]Tripathi G, Singh K, Vishwakarma DK, 2018. Convolutional neural networks for crowd behaviour analysis: a survey. Vis Comput, 35(5):753-776.

[25]Xiong MZ, Cai WT, Zhou SP, et al., 2009. A case study of multi-resolution modeling for crowd simulation. Proc Spring Simulation Multiconf, p.1-8.

[26]Xiong MZ, Tang SY, Zhao D, 2013. A hybrid model for simulating crowd evacuation. New Gener Comput, 31(3):211-235.

[27]Ye J, 2011. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math Comput Modell, 53(1-2):91-97.

[28]Yoon DD, Ayalew B, 2018. Social force control for human-like autonomous driving. ASME Int Design Engineering Technical Conf and Computers and Information in Engineering Conf, Article V003T01A003.

[29]Zhang XG, Yu QN, Yu H, 2018. Physics inspired methods for crowd video surveillance and analysis: a survey. IEEE Access, 6:66816-66830.

[30]Zhao M, Cai W, Turner SJ, 2018. CLUST: simulating realistic crowd behaviour by mining pattern from crowd videos. Comput Graph Forum, 37(1):184-201.

[31]Zhou BL, Tang XO, Wang XG, 2012a. Coherent filtering: detecting coherent motions from crowd clutters. European Conf on Computer Vision, p.857-871.

[32]Zhou BL, Wang XG, Tang XO, 2012b. Understanding collective crowd behaviors: learning a mixture model of dynamic pedestrian-agents. IEEE Conf on Computer Vision and Pattern Recognition, p.2871-2878.

[33]Zhou BL, Tang XO, Wang XG, 2013. Measuring crowd collectiveness. IEEE Conf on Computer Vision and Pattern Recognition, p.3049-3056.

[34]Zhou MY, Carin L, 2015. Negative binomial process count and mixture modeling. IEEE Trans Patt Anal Mach Intell, 37(2):307-320.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE