Full Text:   <9666>

Summary:  <1459>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-08-16

Cited: 0

Clicked: 6548

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhi Zheng

https://orcid.org/0000-0002-9455-0059

Shuncheng Cai

https://orcid.org/0000-0002-5750-7326

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.10 P.1334-1350

http://doi.org/10.1631/FITEE.2000362


A collaborative target tracking algorithm for multiple UAVs with inferior tracking capabilities


Author(s):  Zhi Zheng, Shuncheng Cai

Affiliation(s):  College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China

Corresponding email(s):   zhengz@fjnu.edu.cn

Key Words:  Collaborative target tracking, Intent estimation, MDA-Voronoi diagram, Multi-UAV, Inferior tracking capability


Zhi Zheng, Shuncheng Cai. A collaborative target tracking algorithm for multiple UAVs with inferior tracking capabilities[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(10): 1334-1350.

@article{title="A collaborative target tracking algorithm for multiple UAVs with inferior tracking capabilities",
author="Zhi Zheng, Shuncheng Cai",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="10",
pages="1334-1350",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000362"
}

%0 Journal Article
%T A collaborative target tracking algorithm for multiple UAVs with inferior tracking capabilities
%A Zhi Zheng
%A Shuncheng Cai
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 10
%P 1334-1350
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000362

TY - JOUR
T1 - A collaborative target tracking algorithm for multiple UAVs with inferior tracking capabilities
A1 - Zhi Zheng
A1 - Shuncheng Cai
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 10
SP - 1334
EP - 1350
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000362


Abstract: 
Target tracking is one of the hottest topics in the field of drone research. In this paper, we study the multiple unmanned aerial vehicles (multi-UAV) collaborative target tracking problem. We propose a novel tracking method based on intention estimation and effective cooperation for UAVs with inferior tracking capabilities to track the targets that may have agile, uncertain, and intelligent motion. For three classic target motion modes, we first design a novel trajectory feature extraction method with the least dimension and maximum coverage constraints, and propose an intention estimation mechanism based on the environment and target trajectory features. We propose a novel Voronoi diagram, called MDA-Voronoi, which divides the area with obstacles according to the minimum reachable distance and the minimum steering angle of each UAV. In each MDA-Voronoi region, the maximum reachable region of each UAV is defined, the upper and lower bounds of the trajectory coverage probability are analyzed, and the tracking strategies of the UAVs are designed to effectively reduce the tracking gaps to improve the target sensing time. Then, we use the Nash Q-learning method to design the UAVs’ collaborative tracking strategy, considering factors such as collision avoidance, maneuvering constraints, tracking cost, sensing performance, and path overlap. By designing the reward mechanism, the optimal action strategies are obtained as the control input of the UAVs. Finally, simulation analyses are provided to validate our method, and the results demonstrate that the algorithm can improve the collaborative target tracking performance for multiple UAVs with inferior tracking capabilities.

一种跟踪性能不占优的多无人机协同目标跟踪方法

郑之,蔡舜诚
福建师范大学计算机与网络空间安全学院,中国福州市,350117
摘要:目标跟踪是无人机领域研究热点之一。本文针对无人机跟踪性能不占优,以及目标具有灵活、智能运动特征的情形,研究了多无人机协同目标跟踪问题。提出一种基于目标意图估计的多无人机协同跟踪策略。首先设计了一种具有降维和最大感知覆盖约束的轨迹特征提取方法,以降低无人机跟踪代价,并对目标典型的3类运动模式,根据环境和目标轨迹主要特征,设计了一种意图估计方法;然后,设计了一种在障碍物环境中基于最小可达距离和最小转角代价的MDA-Voronoi图,证明分析了目标被感知的概率;接着,设计了无人机的协同跟踪策略,以减小目标跟踪丢失的间隙,增加目标被感知的时间;通过纳什Q学习方法,在奖励函数中考虑了避障、跟踪代价、感知质量、飞行约束等因素,将最优动作策略作为无人机的控制输入。最后,通过仿真验证了本文方法能在无人机跟踪性能不占优的情况下提高跟踪质量。

关键词:协同跟踪;意图估计;MDA-Voronoi图;多无人机;性能不占优

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adepegba A, Miah MS, Spinello D, 2016. Multi-agent area coverage control using reinforcement learning. Proc 29th Int Florida Artificial Intelligence Research Society Conf, p.368-373.

[2]Bordonaro SV, Willett P, Bar-Shalom Y, et al., 2019. Converted measurement sigma point Kalman filter for bistatic sonar and radar tracking. IEEE Trans Aerosp Electron Syst, 55(1):147-159.

[3]Cai J, Huang CQ, Guo HF, 2012. Multi-sensor cooperative tracking using distributed Nash Q-learning. Adv Mater Res, 591-593:1475-1478.

[4]Di B, Zhou R, Dong ZN, 2016. Cooperative localization and tracking of multiple targets with the communication-aware unmanned aerial vehicle system. Contr Dec, 31(4):616-622 (in Chinese).

[5]Douthwaite JA, Zhao SY, Mihaylova LS, 2019. Velocity obstacle approaches for multi-agent collision avoidance. Unmann Syst, 7(1):55-64.

[6]Gao GQ, Xin B, 2019. A-STC: auction-based spanning tree coverage algorithm for motion planning of cooperative robots. Front Inform Technol Electron Eng, 20(1):18-31.

[7]Goldhoorn A, Garrell A, Alquzar R, et al., 2018. Searching and tracking people with cooperative mobile robots. Auton Robot, 42(4):739-759.

[8]Hu JL, Wellman MP, 2003. Nash Q-learning for general-sum stochastic games. J Mach Learn Res, 4:1039-1069.

[9]Jiang H, Liang YQ, 2018. Online path planning of autonomous UAVs for bearing-only standoff multi-target following in threat environment. IEEE Access, 6:22531-22544.

[10]Khalkhali MB, Vahedian A, Yazdi HS, 2020. Multi-target state estimation using interactive Kalman filter for multi-vehicle tracking. IEEE Trans Intell Transp Syst, 21(3):1131-1144.

[11]Li TC, 2019. Single-road-constrained positioning based on deterministic trajectory geometry. IEEE Commun Lett, 23(1):80-83.

[12]Li TC, Su JY, Liu W, et al., 2017. Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front Inform Technol Electron Eng, 18(12):1913-1939.

[13]Li TC, Chen HM, Sun SD, et al., 2019. Joint smoothing and tracking based on continuous-time target trajectory function fitting. IEEE Trans Autom Sci Eng, 16(3):1476-1483.

[14]Liu YS, Wang QX, Hu HS, et al., 2019. A novel real-time moving target tracking and path planning system for a quadrotor UAV in unknown unstructured outdoor scenes. IEEE Trans Syst Man Cybern Syst, 49(11):2362-2372.

[15]Meng W, He ZR, Su R, et al., 2017. Decentralized multi-UAV flight autonomy for moving convoys search and track. IEEE Trans Contr Syst Technol, 25(4):1480-1487.

[16]Quintero SAP, Copp DA, Hespanha JP, 2015. Robust UAV coordination for target tracking using output-feedback model predictive control with moving horizon estimation. American Control Conf, p.3758-3764.

[17]Ragi S, Chong EKP, 2012. Dynamic UAV path planning for multitarget tracking. American Control Conf, p.3845-3850.

[18]Ragi S, Chong EKP, 2013. Decentralized control of unmanned aerial vehicles for multitarget tracking. Int Conf on Unmanned Aircraft Systems, p.260-268.

[19]Ruan WY, Duan HB, 2020. Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization. Front Inform Technol Electron Eng, 21(5):740-748.

[20]Shao Y, Zhao ZF, Li RP, et al., 2020. Target detection for multi-UAVs via digital pheromones and navigation algorithm in unknown environments. Front Inform Technol Electron Eng, 21(5):796-808.

[21]Skorobogatov G, Barrado C, Salamí E, 2020. Multiple UAV systems: a survey. Unmann Syst, 8(2):149-169.

[22]Song WH, Wang JA, Zhao SY, et al., 2019. Event-triggered cooperative unscented Kalman filtering and its application in multi-UAV systems. Automatica, 105(3):264-273.

[23]Sutton RS, Barto AG, 1998. Introduction to Reinforcement Learning. MIT Press, Cambridge, MA, USA.

[24]Vanegas F, Campbell D, Eich M, et al., 2016. UAV based target finding and tracking in GPS-denied and cluttered environments. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.2307-2313.

[25]Wang DB, Wang Y, Jiang WY, et al., 2015. Unmanned aerial vehicles cooperative path planning for ground target tracking via chemical reaction optimization. Sci Sin Technol, 45(6):583-594.

[26]Wang L, Peng H, Zhu HY, et al., 2011. Cooperative tracking of ground moving target using unmanned aerial vehicles in cluttered environment. Contr Theor Appl, 28(3):300-308 (in Chinese).

[27]Wang T, Qin RX, Chen Y, et al., 2019. A reinforcement learning approach for UAV target searching and tracking. Multim Tools Appl, 78(4):4347-4364.

[28]Yao P, Wang HL, Su ZK, 2015. Real-time path planning of unmanned aerial vehicle for target tracking and obstacle avoidance in complex dynamic environment. Aerosp Sci Technol, 47(6):269-279.

[29]Yu HL, Meier K, Argyle M, et al., 2015. Cooperative path planning for target tracking in urban environments using unmanned air and ground vehicles. IEEE/ASME Trans Mech, 20(2):541-552.

[30]Zollars MD, Cobb RG, Grymin DJ, 2019. Optimal SUAS path planning in three-dimensional constrained environments. Unmann Syst, 7(2):105-118.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE