Full Text:   <6281>

Summary:  <1311>

CLC number: TB53

On-line Access: 2021-10-08

Received: 2020-07-24

Revision Accepted: 2020-09-18

Crosschecked: 2021-05-07

Cited: 0

Clicked: 5402

Citations:  Bibtex RefMan EndNote GB/T7714


Bo Zhao


Weijia Shi


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.10 P.1390-1401


An adjustable anti-resonance frequency controller for a dual-stage actuation semi-active vibration isolation system

Author(s):  Bo Zhao, Weijia Shi, Bingquan Wang, Jiubin Tan

Affiliation(s):  Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080, China; more

Corresponding email(s):   shiweijia@hit.edu.cn

Key Words:  Semi-active vibration isolation, Dual-stage actuation, Dynamic vibration absorption, Adjustable anti-resonance frequency controller

Bo Zhao, Weijia Shi, Bingquan Wang, Jiubin Tan. An adjustable anti-resonance frequency controller for a dual-stage actuation semi-active vibration isolation system[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(10): 1390-1401.

@article{title="An adjustable anti-resonance frequency controller for a dual-stage actuation semi-active vibration isolation system",
author="Bo Zhao, Weijia Shi, Bingquan Wang, Jiubin Tan",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T An adjustable anti-resonance frequency controller for a dual-stage actuation semi-active vibration isolation system
%A Bo Zhao
%A Weijia Shi
%A Bingquan Wang
%A Jiubin Tan
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 10
%P 1390-1401
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000373

T1 - An adjustable anti-resonance frequency controller for a dual-stage actuation semi-active vibration isolation system
A1 - Bo Zhao
A1 - Weijia Shi
A1 - Bingquan Wang
A1 - Jiubin Tan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 10
SP - 1390
EP - 1401
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000373

In the semiconductor manufacturing industry, the dynamic model of a controlled object is usually obtained from a frequency sweeping method before motion control. However, the existing isolators cannot properly isolate the disturbance of the inertial force on the platform base during frequency sweeping (the frequency is between 0 Hz and the natural frequency). In this paper, an adjustable anti-resonance frequency controller for a dual-stage actuation semi-active vibration isolation system (DSA-SAVIS) is proposed. This system has a significant anti-resonance characteristic; that is, the vibration amplitude can drop to nearly zero at a particular frequency, which is called the anti-resonance frequency. The proposed controller is designed to add an adjustable anti-resonance frequency to fully use this unique anti-resonance characteristic. Experimental results show that the closed-loop transmissibility is less than −15 dB from 0 Hz to the initial anti-resonance frequency. Furthermore, it is less than −30 dB around an added anti-resonance frequency which can be adjusted from 0 Hz to the initial anti-resonance frequency by changing the parameters of the proposed controller. With the proposed controller, the disturbance amplitude of the payload decays from 4 to 0.5 mm/s with a reduction of 87.5% for the impulse disturbance applied to the platform base. Simultaneously, the system can adjust the anti-resonance frequency point in real time by tracking the frequency sweeping disturbances, and a good vibration isolation performance is achieved. This indicates that the DSA-SAVIS and the proposed controller can be applied in the guarantee of an ultra-low vibration environment, especially at frequency sweeping in the semiconductor manufacturing industry.


摘要:在半导体制造业中,被控对象的动态模型通常是在运动控制前通过扫频方法获得。然而,现有隔离器不能很好隔离扫频时惯性力(频率在0 Hz和固有频率之间)对平台基座的干扰。本文提出一种用于双级驱动半主动隔振系统的可调反共振频率控制器。双级驱动半主动隔振系统具有显著的反共振特性,在一个特定频率—即所谓反共振频率—振幅可降至接近零。本控制器的设计目的是增加一个可调的控制器反共振频率,以充分利用这种独特的反共振特性。实验结果表明了本方案的可行性,闭环传递率从0 Hz到初始反共振频率小于−15 dB。此外,在附加反共振频率附近,闭环传递率小于−30 dB,可通过改变控制器参数实现附加反共振频率在0 Hz至初始反共振频率之间的调节。当平台基座受到脉冲扰动时,使用本文提出的控制器,有效载荷扰动幅度从4 mm/s衰减至0.5 mm/s,降低87.5%。同时,通过跟踪扫频干扰,系统可实时调整反共振频率点,获得良好隔振性能。这表明双级驱动半主动隔振系统和所提控制器可应用于保证超低振动环境,特别是在半导体制造业的扫频工作中。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Alujević N, Čakmak D, Wolf H, et al., 2018. Passive and active vibration isolation systems using inerter. J Sound Vib, 418:163-183.

[2]Bai J, Daaoub A, Sangtarash S, et al., 2019. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat Mater, 18(4):364-369.

[3]Brennan MJ, 1997. Vibration control using a tunable vibration neutralizer. Proc Inst Mech Eng C J Mech Eng Sci, 211(2):91-108.

[4]Bronowicki AJ, MacDonald R, Gursel Y, et al., 2003. Dual stage passive vibration isolation for optical interferometer missions. Proc SPIE 4852, Interferometry in Space, p.753-763.

[5]Butler H, 2011. Position control in lithographic equipment. IEEE Contr Syst Mag, 31(5):28-47.

[6]Carre H, Doxtator RH, Duffy MC, 1982. Semiconductor manufacturing technology at IBM. IBM J Res Dev, 26(5):528-531.

[7]Coronado A, Trindade MA, Sampaio R, 2013. Frequency-dependent viscoelastic models for passive vibration isolation systems. Shock Vib, 9(4-5):862159.

[8]Davis CL, Lesieutre GA, 2000. An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness. J Sound Vib, 232(3):601-617.

[9]Ding D, Torres JA, Pan DZ, 2011. High performance lithography hotspot detection with successively refined pattern identifications and machine learning. IEEE Trans Comput Aided Des Integr Circ Syst, 30(11):1621-1634.

[10]Franček P, Petošić A, Budimir M, et al., 2019. Electrical resonance/antiresonance characterization of NDT transducer and possible optimization of impulse excitation signals width and their types. NDT E Int, 106:29-41.

[11]Ismagilov FR, Papini L, Vavilov VE, et al., 2020. Design and performance of a high-speed permanent magnet generator with amorphous alloy magnetic core for aerospace applications. IEEE Trans Ind Electron, 67(3):1750-1758.

[12]Ito S, Neyer D, Pirker S, et al., 2015. Atomic force microscopy using voice coil actuators for vibration isolation. Proc IEEE Int Conf on Advanced Intelligent Mechatronics, p.470-475.

[13]Ito S, Unger S, Schitter G, 2017. Vibration isolator carrying atomic force microscope’s head. Mechatronics, 44:32-41.

[14]Kamesh D, Pandiyan R, Ghosal A, 2012. Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform. J Sound Vib, 331(6):1310-1330.

[15]Lee KW, Noh YJ, Arai Y, et al., 2011. Precision measurement of micro-lens profile by using a force-controlled diamond cutting tool on an ultra-precision lathe. Int J Precis Technol, 2(2-3):211-225.

[16]Li D, Wang B, Tong Z, et al., 2019. On-machine surface measurement and applications for ultra-precision machining: a state-of-the-art review. Int J Adv Manuf Technol, 104(1-4):831-847.

[17]Liu H, Cui SP, Liu YW, et al., 2018. Design and vibration suppression control of a modular elastic joint. Sensors, 18(6):1869.

[18]Matichard F, Lantz B, Mittleman R, et al., 2015. Seismic isolation of advanced LIGO: review of strategy, instrumentation and performance. Class Quantum Grav, 32(18):185003.

[19]Nagaya K, Kurusu A, Ikai S, et al., 1999. Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control. J Sound Vib, 228(4):773-792.

[20]Nelson PG, 1991. An active vibration isolation system for inertial reference and precision measurement. Rev Sci Instrum, 62(9):2069-2075.

[21]Niu JC, Zhao GQ, Hu XX, 2005. Active control of structural vibration by piezoelectric stack actuators. J Zhejiang Univ Sci, 6(9):974-979.

[22]Niu WC, Li B, Xin T, et al., 2018. Vibration active control of structure with parameter perturbation using fractional order positive position feedback controller. J Sound Vib, 430:101-114.

[23]Qiu ZC, Wang XF, Zhang XM, et al., 2018. A novel vibration measurement and active control method for a hinged flexible two-connected piezoelectric plate. Mech Syst Signal Process, 107:357-395.

[24]Qu D, Liu XD, Liu GT, et al., 2019. Analysis of vibration isolation performance of parallel air spring system for precision equipment transportation. Meas Contr, 52(3-4):291-302.

[25]Song CS, Xiao Y, Yu CC, et al., 2018. H active control of frequency-varying disturbances in a main engine on the floating raft vibration isolation system. J Low Freq Noise Vib Active Contr, 37(2):199-215.

[26]Sun T, Huang ZY, Chen DY, et al., 2003. Signal frequency based self-tuning fuzzy controller for semi-active suspension system. J Zhejiang Univ Sci, 4(4):426-432.

[27]Suzuki Y, Abe N, 2013. Variable stiffness system for semi-active vibration control by frequency. Proc Conf of Kanto Branch, p.923-928.

[28]Wang H, Li B, Liu Y, et al., 2019. Low-frequency, broadband piezoelectric vibration energy harvester with folded trapezoidal beam. Rev Sci Instrum, 90(3):035001.

[29]Xu JW, Yang XF, Li W, et al., 2020. Research on semi-active vibration isolation system based on electromagnetic spring. Mech Ind, 21(1):101.

[30]Xu YF, Liao H, Liu L, et al., 2015. Modeling and robust H-infinite control of a novel non-contact ultra-quiet Stewart spacecraft. Acta Astronaut, 107:274-289.

[31]Yang BB, Hu YF, Vicario F, et al., 2017. Improvements of magnetic suspension active vibration isolation for floating raft system. Int J Appl Electromagn Mech, 53(2):193-209.

[32]Yin SH, Xu ZQ, Yu JW, 2012. The composite ultra-precision processing technology for the small aspheric mould of stainless steel. Adv Mater Res, 497:176-179.

[33]Yong C, Zimcik DG, Wickramasinghe VK, et al., 2004. Development of the smart spring for active vibration control of helicopter blades. J Int Mat Syst Struct, 15(1):37-47.

[34]Zhang F, Shao SB, Tian Z, et al., 2019. Active-passive hybrid vibration isolation with magnetic negative stiffness isolator based on Maxwell normal stress. Mech Syst Signal Process, 123:244-263.

[35]Zhao C, Chen DY, 2008. Semi-active fuzzy sliding mode control for floating raft isolation system. Chin J Mech Eng, 44(2):163-169 (in Chinese).

[36]Zuo L, Slotine JJE, 2005. Robust vibration isolation via frequency-shaped sliding control and modal decomposition. J Sound Vib, 285(4-5):1123-1149.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE