Full Text:   <1267>

CLC number: 

On-line Access: 2021-04-21

Received: 2020-11-02

Revision Accepted: 2021-03-07

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2427

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 1998 Vol.-1 No.-1 P.

http://doi.org/10.1631/FITEE.2000596


Reducing power grid cascading failure propagation by minimizing algebraic connectivity in edge addition


Author(s):  Supaporn LONAPALAWONG, Jiangzhe YAN, Jiayu LI, Deshi YE, Wei CHEN, Yong TANG, Yanhao HUANG, Can WANG

Affiliation(s):  The State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   11821132@zju.edu.cn, wcan@zju.edu.cn

Key Words:  Network robustness, Cascading failure, Average propagation, Algebraic connectivity, Power grid


Supaporn LONAPALAWONG, Jiangzhe YAN, Jiayu LI, Deshi YE, Wei CHEN, Yong TANG, Yanhao HUANG, Can WANG. Reducing power grid cascading failure propagation by minimizing algebraic connectivity in edge addition[J]. Frontiers of Information Technology & Electronic Engineering, 1998, -1(-1): .

@article{title="Reducing power grid cascading failure propagation by minimizing algebraic connectivity in edge addition",
author="Supaporn LONAPALAWONG, Jiangzhe YAN, Jiayu LI, Deshi YE, Wei CHEN, Yong TANG, Yanhao HUANG, Can WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="-1",
number="-1",
pages="",
year="1998",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000596"
}

%0 Journal Article
%T Reducing power grid cascading failure propagation by minimizing algebraic connectivity in edge addition
%A Supaporn LONAPALAWONG
%A Jiangzhe YAN
%A Jiayu LI
%A Deshi YE
%A Wei CHEN
%A Yong TANG
%A Yanhao HUANG
%A Can WANG
%J Journal of Zhejiang University SCIENCE C
%V -1
%N -1
%P
%@ 2095-9184
%D 1998
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000596

TY - JOUR
T1 - Reducing power grid cascading failure propagation by minimizing algebraic connectivity in edge addition
A1 - Supaporn LONAPALAWONG
A1 - Jiangzhe YAN
A1 - Jiayu LI
A1 - Deshi YE
A1 - Wei CHEN
A1 - Yong TANG
A1 - Yanhao HUANG
A1 - Can WANG
J0 - Journal of Zhejiang University Science C
VL - -1
IS - -1
SP -
EP -
%@ 2095-9184
Y1 - 1998
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000596


Abstract: 
Analyzing network robustness under various circumstances is generally regarded as a challenging problem. Robustness against failure is one of the essential properties of large-scale dynamic network systems such as power grids, transportation systems, communication systems and computer networks. Due to network diversity and complexity, many topological features have been proposed to capture specific system properties. For power grids, a popular process for improving a network's structural robustness is via the topology design. However, most of the existing methods focus on localized network metrics, such as node connectivity and edge connectivity, which do not encompass a global perspective of the cascading propagation in a power grid. In this paper, we use an informative global metric algebraic connectivity because it is sensitive to the connectedness in a broader spectrum of graphs. Our process involves decreasing the average propagation in a power grid by minimizing the increase in its algebraic connectivity. We propose a topology-based greedy strategy to optimize the robustness of the power grid. To evaluate the network robustness, we calculate the average propagation using MATCASC to simulate cascading line outages in power grids. Experimental results illustrate that our proposed method outperforms existing techniques.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE