Full Text:   <6431>

Summary:  <198>

CLC number: TN92

On-line Access: 2023-07-03

Received: 2021-09-18

Revision Accepted: 2022-03-14

Crosschecked: 2023-07-03

Cited: 0

Clicked: 1959

Citations:  Bibtex RefMan EndNote GB/T7714


Syed Agha Hassnain MOHSAN


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.6 P.767-800


A comprehensive review of optical wireless power transfer technology

Author(s):  Syed Agha Hassnain MOHSAN, Haoze QIAN, Hussain AMJAD

Affiliation(s):  Optical Communication Laboratory, Ocean College, Zhejiang University,Zhoushan 316021,China; more

Corresponding email(s):   Hassnainagha@zju.edu.cn

Key Words:  Wireless power transmission, Optical wireless power transfer, Distributed laser charging, Laser diode, Solar cell

Share this article to: More |Next Article >>>

Syed Agha Hassnain MOHSAN, Haoze QIAN, Hussain AMJAD. A comprehensive review of optical wireless power transfer technology[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(6): 767-800.

@article{title="A comprehensive review of optical wireless power transfer technology",
author="Syed Agha Hassnain MOHSAN, Haoze QIAN, Hussain AMJAD",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A comprehensive review of optical wireless power transfer technology
%A Syed Agha Hassnain MOHSAN
%A Haoze QIAN
%A Hussain AMJAD
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 6
%P 767-800
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100443

T1 - A comprehensive review of optical wireless power transfer technology
A1 - Syed Agha Hassnain MOHSAN
A1 - Haoze QIAN
A1 - Hussain AMJAD
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 6
SP - 767
EP - 800
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100443

Ground-breaking optical wireless power transfer (OWPT) techniques have gained significant attention from both academia and industry in recent decades. Powering remote systems through laser diodes (LDs) to either operate devices or recharge batteries offers several benefits. Remote LDs can remove the burden of carrying extra batteries and can reduce mission time by removing battery swap-time and charging. Apart from its appealing benefits, laser power transfer (LPT) is still a challenging task due to its low transfer efficiency. In this paper, we discuss the necessity and feasibility of OWPT and discuss several projects, working principle, system design, and components. In addition, we show that OWPT is an essential element to supply power to Internet-of-Things (IoT) terminals. We also highlight the impacts of dynamic OWPT. We outline several OWPT techniques including optical beamforming, distributed laser charging (DLC), adaptive-DLC (ADLC), simultaneous lightwave information and power transfer (SLIPT), Thing-to-Thing (T2T) OWPT, and high intensity laser power beaming (HILPB). We also deal with laser selection, hazard analysis, and received photovoltaic (PV) cell selection for OWPT systems. Finally, we discuss a range of open challenges and counter measures. We believe that this review will be helpful in integrating research and eliminating technical uncertainties, thereby promoting progress and innovation in the development of OWPT technologies.


Syed Agha Hassnain MOHSAN1,Haoze QIAN2,Hussain AMJAD3


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Alpert O, Paschotta R, 2013. Wireless Laser System for Power Transmission Utilizing a Gain Medium Between Retroreflectors. Google Patents US20170373543A1.

[2]Alsulaiman SM, Alrushood AA, Almasaud J, et al., 2014. High-power handheld blue laser-induced maculopathy: the results of the King Khaled Eye Specialist Hospital Collaborative Retina Study Group. Ophthalmology, 121(2):566-572.e1.

[3]Becker DE, Chiang R, Keys CC, et al., 2010. Photovoltaic-concentrator based power beaming for space elevator application. AIP Conf Proc, 1230(1):271-281.

[4]Boyle A, 2018. Charging your smartphone with lasers? Engineers say it‘s not as scary as it sounds. https://www.geekwire.com/2018/charging-smartphone-lasers-not-scary-sounds/ [Accessed on Mar. 1, 2021].

[5]Breton D, Delagnes E, Maalmi J, et al., 2011. High resolution photon timing with MCP-PMTs: a comparison of a commercial constant fraction discriminator (CFD) with the ASIC-based waveform digitizers TARGET and WaveCatcher. Nucl Instrum Methods Phys Res Sect, 629(1):123-132.

[6]Carron C, 2018. Future of Drones: in-Flight Charging via Lab-Grown Diamonds. https://dronebelow.com/2018/11/08/future-of-drones-in-flight-charging-via-lab-grown-diamonds/ [Accessed on Mar. 1, 2021].

[7]Clark SS, Gummeson J, Fu K, et al., 2009. Towards autonomously-powered CRFIDs. Proc ACM Workshop on Power Aware Computing and Systems.

[8]Costanzo A, Dionigi M, Masotti D, et al., 2014. Electromagnetic energy harvesting and wireless power transmission: a unified approach. Proc IEEE, 102(11):1692-1711.

[9]Crump P, Grimshaw M, Wang J, et al., 2006. 85% power conversion efficiency 975-nm broad area diode lasers at -50 °C, 76% at 10 °C. Proc Conf on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conf, p.1-2.

[10]Crump P, Dong WM, Grimshaw M, et al., 2007. 100-W+ diode laser bars show >71% power conversion from 790-nm to 1000-nm and have clear route to >85%. Proc SPIE 6456, High-Power Diode Laser Technology and Applications V, Article 64560M.

[11]Crump P, Erbert G, Wenzel H, et al., 2013. Efficient high-power laser diodes. IEEE J Sel Top Quant Electron, 19(4):1501211.

[12]Dasgupta A, Mennemanteuil MM, Buret M, et al., 2018. Optical wireless link between a nanoscale antenna and a transducing rectenna. Nat Commun, 9:1992.

[13]de Luca D, Delfino I, Lepore M, 2012. Laser safety standards and measurements of hazard parameters for medical lasers. Int J Opt Appl, 2(6):80-86.

[14]de Oliveira Filho JI, Trichili A, Ooi BS, et al., 2020. Toward self-powered Internet of underwater things devices. IEEE Commun Mag, 58(1):68-73.

[15]Deppe DG, 2018. High Rel/Speed/Harsh Environment VCSEL Development. AFRL-RV-PSTR-2018-0084, University of Central Florida, Florida, USA.

[16]Deppe DG, Li MX, Yang X, et al., 2018. Advanced VCSEL technology: self-heating and intrinsic modulation response. IEEE J Quant Electron, 54(3):2400209.

[17]Diamantoulakis PD, Pappi KN, Karagiannidis GK, et al., 2017. Joint downlink/uplink design for wireless powered networks with interference. IEEE Access, 5:1534-1547.

[18]Diamantoulakis PD, Karagiannidis GK, Ding ZG, 2018. Simultaneous lightwave information and power transfer (SLIPT). IEEE Trans Green Commun Netw, 2(3):764-773.

[19]Ding JP, Liu WW, I CL, et al., 2020. Advanced progress of optical wireless technologies for power industry: an overview. Appl Sci, 10(10):6463.

[20]Duncan KJ, 2016. Laser based power transmission: component selection and laser hazard analysis. Proc IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, p.100-103.

[21]Fafard S, York MCA, Proulx F, et al., 2016. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl Phys Lett, 108(7):071101.

[22]Fakharzadeh M, Chaudhuri SK, Safavi-Naeini S, 2008. Optical beamforming with tunable ring resonators. Proc IEEE Antennas and Propagation Society Int Symp, p.‍1-4.

[23]Fakidis J, Ijaz M, Kucera S, et al., 2014. On the design of an optical wireless link for small cell backhaul communication and energy harvesting. Proc 25th Annual Int Symp on Personal, Indoor, and Mobile Radio Communication, p.58-62.

[24]Fakidis J, Kucera S, Claussen H, et al., 2015. On the design of a free space optical link for small cell backhaul communication and power supply. Proc IEEE Int Conf on Communication Workshop, p.1428-1433.

[25]Fakidis J, Videv S, Kucera S, et al., 2016. Indoor optical wireless power transfer to small cells at nighttime. J Lightw Technol, 34(13):3236-3258.

[26]Fakidis J, Videv S, Helmers H, et al., 2018. 0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell. IEEE Photon Technol Lett, 30(9):841-844.

[27]Fakidis J, Helmers H, Haas H, 2020. Simultaneous wireless data and power transfer for a 1-Gb/s GaAs VCSEL and photovoltaic link. IEEE Photon Technol Lett, 32(9):1277-1280.

[28]Fang W, Zhang QQ, Liu QW, et al., 2019. Fair scheduling in resonant beam charging for IoT devices. IEEE Int Things J, 6(1):641-653.

[29]Fördös T, Postava K, Jaffrès H, et al., 2018. Mueller matrix ellipsometric study of multilayer spin-VCSEL structures with local optical anisotropy. Appl Phys Lett, 112(22):221106.

[30]Gallo P, 2019. Diamond and wireless energy transmission. Proc Diamond Photonics‍—‍Physics, Technologies and Applications, p.129.

[31]Gibbs Y, 2017. NASA Armstrong Fact Sheet: Beamed Laser Power for UAVs. National Aeronautics and Space Administration. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-087-DFRC.html [Accessed on Mar. 1, 2021].

[32]Gies D, 2019. Safety of free-space optical communication systems. Proc IEEE Int Symp on Product Compliance Engineering, p.1-3.

[33]Gong J, Zhou S, Niu ZS, 2013. Optimal power allocation for energy harvesting and power grid coexisting wireless communication systems. IEEE Trans Commun, 61(7):3040-3049.

[34]Goto K, Nakagawa T, Nakamura O, et al., 2001. An implantable power supply with an optically rechargeable lithium battery. IEEE Trans Biomed Eng, 48(7):830-833.

[35]Grabherr M, Miller M, Jager R, et al., 1999. High-power VCSELs: single devices and densely packed 2-D-arrays. IEEE J Sel Top Quant Electron, 5(3):495-502.

[36]Gray JL, 2003. The physics of the solar cell. In: Luque A, Hegedus S (Eds.), Handbook of Photovoltaic Science and Engineering. John Wiley, Hoboken, USA, p.82-128.

[37]Green MA, Emery K, Hishikawa Y, et al., 2015. Solar cell efficiency tables (version 46). Prog Photovolt, 23(7):805-812.

[38]Gu SX, Guo SX, Zheng L, 2020. A highly stable and efficient spherical underwater robot with hybrid propulsion devices. Auton Robot, 44(5):759-771.

[39]Haydaroglu I, Mutlu S, 2015. Optical power delivery and data transmission in a wireless and batteryless microsystem using a single light emitting diode. J Microelectromech Syst, 24(1):155-165.

[40]He T, Yang SH, Zhang HY, et al., 2014. High-power high-efficiency laser power transmission at 100 m using optimized multi-cell GaAs converter. Chin Phys Lett, 31(10):104203.

[41]Hecht E, 2001. Modern optics: lasers and other topics. In: Hecht E (Ed.), Optics (4th Ed.), p.581-648.

[42]Hirota M, Iio S, Ohta Y, et al., 2015. Wireless power transmission between a NIR VCSEL array and silicon solar cells. Proc 20th Microoptics Conf, p.1-2.

[43]Ho SL, Wang JH, Fu WN, et al., 2011. A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging. IEEE Trans Magn, 47(5):1522-1525.

[44]Hoffert E, Soukup P, Hoffert M, 2004. Power beaming for space-based electricity on Earth: near-term experiments with radars, lasers and satellites. Proc 4th Int Conf on Solar Power from Space, p.195.

[45]Höhn O, Walker AW, Bett AW, et al., 2016. Optimal laser wavelength for efficient laser power converter operation over temperature. Appl Phys Lett, 108(24):241104.

[46]Hu SQ, Liu HJ, Zhao LF, et al., 2020. The link attenuation model based on Monte Carlo simulation for laser transmission in fog channel. IEEE Photon J, 12(4):6100910.

[47]IEC, 2007. Safety of Laser Products‍—‍Part 1: Equipment Classification and Requirements. IEC 60825-1.

[48]Iga K, 2008. Vertical-cavity surface-emitting laser: its conception and evolution. Jpn J Appl Phys, 47(1R):1.

[49]International Commission on Non-Ionizing Radiation Protection (ICNIRP), 2013. ICNIRP guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 μm. Health Phys, 105(3):271-295.

[50]Ishikawa R, Kato T, Anzo R, et al., 2020. Widegap CH3NH3PbBr3 solar cells for optical wireless power transmission application. Appl Phys Lett, 117(1):013902.

[51]Iwai N, Takaki K, Shimizu H, et al., 2009. 1060 nm VCSEL array for optical interconnection. Furukawa Rev, 36:1‍‍-4.

[52]Iyer V, Bayati E, Nandakumar R, et al., 2018. Charging a smartphone across a room using lasers. Proc ACM Interact Mob Wear Ubiq Technol, 1(4):‍143.

[53]Jaafar W, Yanikomeroglu H, 2021. Dynamics of laser-charged UAVs: a battery perspective. IEEE Int Things J, 8(13):10573-10582.

[54]Jaffe P, Borders K, Browne C, et al., 2019. Opportunities and Challenges for Space Solar for Remote Installations. NRL/MR/8243-19-9813, Naval Research Laboratory, Washington, DC, USA.

[55]Jäger R, Grabherr M, Jung C, et al., 1997. 57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs. Electron Lett, 33(4):330-331.

[56]Jawad AM, Nordin R, Gharghan SK, et al., 2017. Opportunities and challenges for near-field wireless power transfer: a review. Energies, 10(7):1022.

[57]Jean M, Schulmeister K, Lund DJ, et al., 2021. Laser-induced corneal injury: validation of a computer model to predict thresholds. Biomed Opt Expr, 12(1):336-353.

[58]Jin K, Zhou WY, 2019. Wireless laser power transmission: a review of recent progress. IEEE Trans Power Electron, 34(4):3842-3859.

[59]Jin MHC, Pierce JM, Lambiotte JC, et al., 2018. Underwater free-space optical power transfer: an enabling technology for remote underwater intervention. Proc Offshore Technology Conf, Article OTC-28892-MS.

[60]Kageyama T, Takaki K, Imai S, et al., 2009. High efficiency 1060 nm VCSELS for low power consumption. Proc IEEE Int Conf on Indium Phosphide & Related Materials, p.391-396.

[61]Kasazumi K, Kitaoka Y, Mizuuchi K, et al., 2004. A practical laser projector with new illumination optics for reduction of speckle noise. Jpn J Appl Phys, 43(8S):5904-5906.

[62]Kasukawa A, 2012. VCSEL technology for green optical interconnects. IEEE Photon J, 4(2):642-646.

[63]Katsuta Y, Miyamoto T, 2017. Efficiency improvement by serial-connection of VCSEL array for optical wireless power transmission. Proc 22nd Microoptics Conf, p.296-297.

[64]Katsuta Y, Miyamoto T, 2018. Design and experimental characterization of optical wireless power transmission using GaAs solar cell and series-connected high-power vertical cavity surface emitting laser array. Jpn J Appl Phys, 57(8S2):08PD01.

[65]Katsuta Y, Miyamoto T, 2019a. Characterization and optimization of fly-eye lens system in optical wireless power transmission. Proc 24th Microoptics Conf, p.288-289.

[66]Katsuta Y, Miyamoto T, 2019b. Design, simulation and characterization of fly-eye lens system for optical wireless power transmission. Jpn J Appl Phys, 58(SJ):SJJE02.

[67]Kaushal H, Kaddoum G, 2017. Applications of lasers for tactical military operations. IEEE Access, 5:20736-20753.

[68]Kawashima N, Takeda K, 2008. Laser energy transmission for a wireless energy supply to robots. In: Balaguer C, Abderrahim M (Eds.), Robotics and Automation in Construction. InTech Open, p.373-380.

[69]Kawashima N, Takeda K, Yabe K, 2007. Application of the laser energy transmission technology to drive a small airplane. Chin Opt Lett, 5(S1):S109-S110.

[70]Kim J, 2020. Three dimensional distributed rendezvous in spherical underwater robots considering power consumption. Ocean Eng, 199:107050.

[71]Kim SM, Kim SM, 2013a. Wireless optical energy transmission using optical beamforming. Opt Eng, 52(4):043205.

[72]Kim SM, Kim SM, 2013b. Wireless visible light communication technology using optical beamforming. Opt Eng, 52(10):106101.

[73]Kim SM, Park H, 2020. Optimization of optical wireless power transfer using near-infrared laser diodes. Chin Opt Lett, 18(4):042603.

[74]Kim SM, Rhee DH, 2018. Experimental demonstration of optical wireless power transfer with a DC-to-DC transfer efficiency of 12.1%. Opt Eng, 57(8):086108.

[75]Kim SM, Won JS, 2013. Simultaneous reception of visible light communication and optical energy using a solar cell receiver. Proc Int Conf on ICT Convergence, p.896-897.

[76]Kinsey GS, Nayak A, Liu MG, et al., 2011. Increasing power and energy in Amonix CPV solar power plants. IEEE J Photovolt, 1(2):213-218.

[77]Kline M, Izyumin I, Boser B, et al., 2011. Capacitive power transfer for contactless charging. Proc 26th Annual IEEE Applied Power Electronics Conf and Exposition, p.‍1398-1404.

[78]Kong MW, Lin JM, Kang CH, et al., 2019. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells. Opt Expr, 27(24):34542-34551.

[79]Kong MW, Kang CH, Alkhazragi O, et al., 2020. Survey of energy-autonomous solar cell receivers for satellite‍–‍air–ground‍–‍ocean optical wireless communication. Progr Quant Electron, 74:100300.

[80]Kurs A, Karalis A, Moffatt R, et al., 2007. Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834):83-86.

[81]Laser Focus World, 2020. VCSEL Advances: VCSEL Power-Conversion Efficiency Improves to 45%. Lasers and Sources. https://www.‍laserfocusworld.‍com/lasers-sources/article/14074146/vcsel-power-conversion-efficiency-improves-to-45 [Accessed on Mar. 1, 2021].

[82]Lear KL, Choquette KD, Schneider RP, et al., 1995. Vertical-cavity surface-emitting lasers with 50% power conversion efficiency. Proc Conf on Lasers and Electro-Optics 1995, Article CTuB2.

[83]Lee TD, Ebong AU, 2017. A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev, 70:1286-1297.

[84]Lee W, Yoon YK, 2021. High efficiency metamaterial-based multi-scale wireless power transfer for smart home applications. Proc IEEE MTT-S Int Microwave Symp, p.‍62-65.

[85]Li SQ, Mi CC, 2015. Wireless power transfer for electric vehicle applications. IEEE J Emerg Sel Top Power Electron, 3(1):4-17.

[86]Lim J, Khwaja TS, Ha JY, 2019. Wireless optical power transfer system by spatial wavelength division and distributed laser cavity resonance. Opt Expr, 27(12):A924-A935.

[87]Lin JC, 2006. A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation. IEEE Antenn Propag Mag, 48(1):157-159.

[88]Lin KB, Xing J, Quan LN, et al., 2018. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562(7726):245-248.

[89]Liu PQ, Hoffman AJ, Escarra MD, et al., 2010. Highly power-efficient quantum cascade lasers. Nat Photon, 4(2):95-98.

[90]Liu QW, Wu J, Xia PF, et al., 2016. Charging unplugged: will distributed laser charging for mobile wireless power transfer work?IEEE Veh Technol Mag, 11(4):36-45.

[91]Liu WH, Feng QB, 2017. Comparison on collimation measurement between white LED and LD. Acta Photon Sin, 46(9):0912004(in Chinese).

[92]Liu Y, Miyamoto T, 2019a. Application of scattering characteristics to module with filters on solar cell for improvement of OWPT equipment appearance. Proc 24th Microoptics Conf, p.208-209.

[93]Liu Y, Miyamoto T, 2019b. Investigation of cover configuration of solar cells that enhances appearance of OWPT. 66th JSAP Spring Meeting.

[94]Lu M, Bagheri M, James AP, et al., 2018. Wireless charging techniques for UAVs: a review, reconceptualization, and extension. IEEE Access, 6:29865-29884.

[95]Lu X, Niyato D, Wang P, et al., 2015. Wireless charger networking for mobile devices: fundamentals, standards, and applications. IEEE Wirel Commun, 22(2):‍‍126-135.

[96]Lu X, Wang P, Niyato D, et al., 2016. Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun Surv Tutor, 18(2):1413-1452.

[97]Luo YZ, Chin KW, 2021. Learning to charge RF-energy harvesting devices in WiFi networks. IEEE Syst J, 15(4):5516-5525.

[98]Luque A, Martí A, Stanley C, 2012. Understanding intermediate-band solar cells. Nat Photon, 6(3):146-152.

[99]Ma S, Zhang F, Li H, et al., 2019. Simultaneous lightwave information and power transfer in visible light communication systems. IEEE Trans Wirel Commun, 18(12):5818-5830.

[100]Machura P, Li Q, 2019. A critical review on wireless charging for electric vehicles. Renew Sustain Energy Rev, 104:209-234.

[101]Mantese D, Riewe T, Zhang Q, 2020. Resonant-Beam Based Optical Wireless Power Charging and Data Communication. ECE 4901, University of Connecticut, Connecticut, USA.

[102]Mason R, 2011. Feasibility of Laser Power Transmission to a High-Altitude Unmanned Aerial Vehicle. Rand Project Air Force, Santa Monica, CA, USA.

[103]Matsuura M, Nomoto H, Mamiya H, et al., 2021. Over 40-W electric power and optical data transmission using an optical fiber. IEEE Trans Power Electron, 36(4):4532-4539.

[104]Mehendale A, 2017. 9 Wireless Power Transfer Projects. Philips Innovation Services, AE Eindhoven, the Netherlands.

[105]Meller S, 2020. Isotropic Systems and QinetiQ Collaborate on the Holy Grail of Antennas. Isotropic Systems. https://www.‍isotropicsystems.‍com/news-3/2020/6/23/uk-tech-cracking-the-code-for-a-new-age-of-connectivity-kthl7 [Accessed on Mar. 5, 2021].

[106]Messier D, 2020. DIU Awards Antenna Contract to Isotropic Systems for Trial Optical Beamforming Technology. http://www.‍parabolicarc.‍com/2020/05/18/diu-awards-antenna-contract-to-isotropic-systems-for-trial-optical-beamforming-technology/ [Accessed on Mar. 5, 2021].

[107]Miller M, Grabherr M, King R, et al., 2001. Improved output performance of high-power VCSELs. IEEE J Sel Top Quant Electron, 7(2):210-216.

[108]Miyamoto T, 2018. Optical wireless power transmission using VCSELs. Proc SPIE 10682, Semiconductor Lasers and Laser Dynamics VIII, Article 1068204.

[109]Moser A, Latta EE, 1992. Arrhenius parameters for the rate process leading to catastrophic damage of AlGaAs-GaAs laser facets. J Appl Phys, 71(10):4848-4853.

[110]Mostafa TM, Muharam A, Hattori R, 2017. Wireless battery charging system for drones via capacitive power transfer. Proc IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, p.1-6.

[111]Murakawa K, Kobayashi M, Nakamura O, et al., 1999. A wireless near-infrared energy system for medical implants. IEEE Eng Med Biol Mag, 18(6):70-72.

[112]Murata A, Nishimura T, Shimizu H, et al., 2020. Effect of high-temperature post-deposition annealing on cesium lead bromide thin films deposited by vacuum evaporation. AIP Adv, 10(4):045031.

[113]Naone RL, Hegblom ER, Coldrenz LA, 1999. Tapered-apertures for high-efficiency miniature VCSELs. Proc Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems, p.III17-III18.

[114]Nayfeh T, Fast B, Raible D, et al., 2011. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions. NASA/TM-2011-217009, NASA, Springs Colorado, CO, USA.

[115]Nguyen DH, 2020. Optical wireless power transfer for moving objects as a life-support technology. Proc IEEE 2nd Global Conf on Life Sciences and Technologies, p.‍405-408.

[116]Nguyen DH, Chapman A, 2020. Universal wireless power transfer for energy security, availability and convenience. https://arxiv.org/abs/2008.12512v2

[117]Nguyen DH, Qin CJ, Matsushima T, et al., 2020. Thing-to-thing optical wireless power transfer based on metal halide perovskite transceivers. https://arxiv.org/abs/2009.06163v1

[118]Nugent TJ, Kare JT, 2011. Laser power beaming for defense and security applications. Proc SPIE 8045, Unmanned Systems Technology XIII, Article 804514.

[119]Oh CW, Cao ZZ, Tangdiongga E, et al., 2016. Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks. Opt Expr, 24(17):19211-19227.

[120]OMRON, 2022. Safety Standards for Laser Beams. https://www.‍ia.‍omron.‍com/product/cautions/common/laser_safety/index.hml [Accessed on Mar. 5, 2021].

[121]O‘Neill MJ, Piszczor MF, Eskenazi MI, et al., 2003. Ultralight stretched Fresnel lens solar concentrator for space power applications. Proc SPIE 5179, Optical Materials and Structures Technologies, p.116-126.

[122]Systems Optiwave, 2022. Optica Virtual Technology Showcase. https://www.optiwave.com [Accessed on Mar. 5, 2021].

[123]Ortabasi U, Friedman H, 2006. Powersphere: a photovoltaic cavity converter for wireless power transmission using high power lasers. Proc IEEE 4th World Conf on Photovoltaic Energy Conf, p.126-129.

[124]OSRAM, 2020. Vixar‘s New Multi-junction VCSEL Technology Boasts Extraordinary Efficiency to Improve 3D Sensing. https://www.‍osram.‍com/os/press/press-releases/vixars-new-multi-junction-vcsel-technologyboasts-extraordinary-efficiency-to-improve-3d-sensing.jsp [Accessed on Mar. 10, 2021].

[125]Pan GF, Diamantoulakis PD, Ma Z, et al., 2019. Simultaneous lightwave information and power transfer: policies, techniques, and future directions. IEEE Access, 7:28250-28257.

[126]Parello J, Claise B, Schoening B, et al., 2014. Energy Management Framework. RFC7326.

[127]Park NG, Zhu K, 2020. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat Rev Mater, 5(5):333-350.

[128]Parks AN, Liu AL, Gollakota S, et al., 2014. Turbocharging ambient backscatter communication. Proc ACM Conf on SIGCOMM, p.619-630.

[129]Perales M, Yang MH, Wu CL, et al., 2016. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications. Proc SPIE 9733, High-Power Diode Laser Technology and Applications XIV, Article 97330U.

[130]Petersen RC, 1997. American national standard for the safe use of optical fiber communications systems utilizing laser diodes and LED sources, ANSI Z136.1-1997. Int Laser Safety Conf, p.104-110.

[131]Powering rovers by High Intensity Laser Induction on Planets (PHILIP), 2019. https://nebula.esa.int/content/powering-rovers-high-intensity-laser-induction-planets-philip-0 [Accessed on July 20, 2021].

[132]Putra AWS, Tanizawa M, Maruyama T, 2019. Optical wireless power transmission using Si photovoltaic through air, water, and skin. IEEE Photon Technol Lett, 31(2):‍‍157-160.

[133]Putra AWS, Kato H, Adinanta H, et al., 2020a. Optical wireless power transmission to moving object using Galvano mirror. Proc SPIE 11272, Free-Space Laser Communications XXXII, Article 112721E.

[134]Putra AWS, Kato H, Maruyama T, 2020b. Infrared LED marker for target recognition in indoor and outdoor applications of optical wireless power transmission system. Jpn J Appl Phys, 59(SO):SOOD06.

[135]Raavi S, Arigong B, Zhou RG, et al., 2013. An optical wireless power transfer system for rapid charging. Proc Texas Symp on Wireless and Microwave Circuits and Systems, p.1-4.

[136]Raible DE, 2008. High intensity laser power beaming for wireless power transmission. ETD Archive 576, Cleveland State University, Cleveland, USA.

[137]Raifuku I, Ishikawa Y, Ito S, et al., 2016. Characteristics of perovskite solar cells under low-illuminance conditions. J Phys Chem C, 120(34):18986-18990.

[138]Rhee DH, Kim SM, 2016. Study on a laser wireless power charge technology. J Korea Inst Electron Commun Sci, 11(12):1219-1224.

[139]Rockwell B, Thomas R, Zimmerman S, 2015. Updates to the ANSI Z136.1 standard. Int Laser Safety Conf, p.75-77.

[140]Rühle S, 2016. Tabulated values of the Shockley‍–‍Queisser limit for single junction solar cells. Sol Energy, 130:‍139-147.

[141]Saha A, Iqbal S, Karmaker M, et al., 2017. A wireless optical power system for medical implants using low power near-IR laser. Proc 39th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society, p.‍1978-1981.

[142]Sahai A, Graham D, 2011. Optical wireless power transmission at long wavelengths. Proc Int Conf on Space Optical Systems and Applications, p.164-170.

[143]Sahli F, Werner J, Kamino BA, et al., 2018. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater, 17(9):820-826.

[144]Sanders M, Kang JS, 2020. Utilization of polychromatic laser system for satellite power beaming. Proc IEEE Aerospace Conf, p.1-7.

[145]Schubert J, Oliva E, Dimroth F, et al., 2009. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Dev, 56(2):170-175.

[146]Seurin JF, Ghosh CL, Khalfin V, et al., 2008. High-power high-efficiency 2D VCSEL arrays. Proc SPIE 6908, Vertical-Cavity Surface-Emitting Lasers XII, Article 690808.

[147]Seurin JF, Xu GY, Khalfin V, et al., 2009. Progress in high-power high-efficiency VCSEL arrays. Proc SPIE 7229, Vertical-Cavity Surface-Emitting Lasers XIII, Article 722903.

[148]Seurin JF, Xu GY, Wang Q, et al., 2010. High-brightness pump sources using 2D VCSEL arrays. Proc SPIE 7615, Vertical-Cavity Surface-Emitting Lasers XIV, Article 76150F.

[149]Seurin JF, Xu GY, Guo BM, et al., 2011. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications. Proc SPIE 7952, Vertical-Cavity Surface-Emitting Lasers XV, Article 79520G.

[150]Seurin JF, Khalfin V, Xu GY, et al., 2013. High-power red VCSEL arrays. Proc SPIE 8639, Vertical-Cavity Surface-Emitting Lasers XVII, Article 86390O.

[151]Shahjalal M, Hasan MK, Chowdhury MZ, et al., 2019. Smartphone camera-based optical wireless communication system: requirements and implementation challenges. Electronics, 8(8):913.

[152]Shi DL, Ma ZF, Wu SC, et al., 2015. Laser wireless power transmission system designing and experiment between airships. Proc 2nd National Conf on Information Technology and Computer Science.

[153]Shi DL, Zhang LL, Ma HH, et al., 2016. Research on wireless power transmission system between satellites. Proc IEEE Wireless Power Transfer Conf, p.1-4.

[154]Shinohara N, 2010. Beam efficiency of wireless power transmission via radio waves from short range to long range. J Electromagn Eng Sci, 10(4):224-230.

[155]Silfvast WT, 2004. Laser Fundamentals. Cambridge University Press, Cambridge, UK.

[156]Smagowska B, Pawlaczyk-Łuszczyńska M, 2013. Effects of ultrasonic noise on the human body—a bibliographic review. Int J Occup Saf Ergon, 19(2):195-202.

[157]Soltani MD, Sarbazi E, Bamiedakis N, et al., 2021. Safety analysis for laser-based optical wireless communications: a tutorial. https://arxiv.org/abs/2102.08707v1

[158]Sprangle P, Hafizi B, Ting A, et al., 2015. High-power lasers for directed-energy applications. Appl Opt, 54(31):F201-F209.

[159]Steinsiek F, 2003. Wireless power transmission experiment as an early contribution to planetary exploration missions. Proc 54th Int Astronautical Congress of the Int Astronautical Federation, the Int Academy of Astronautics, and the Int Institute of Space Law.

[160]Summerer L, Purcell O, 2009. Concepts for wireless energy transmission via laser. Proc Int Conf on Space Optical Systems and Applications.

[161]Sun XC, Zhang LX, Zhang QH, et al., 2019. Si photonics for practical LiDAR solutions. Appl Sci, 9(20):4225.

[162]Takaki K, 2008. A recorded 62% PCE and low series and thermal resistance VCSEL with a double intra-cavity structure. Proc 21st Int Semiconductor Laser Conf.

[163]Takeda Y, 2020. Light trapping for photovoltaic cells used for optical power transmission. Appl Phys Expr, 13(5):054001.

[164]Talla V, Kellogg B, Ransford B, et al., 2015. Powering the next billion devices with Wi-Fi. Proc 11th ACM Conf on Emerging Networking Experiments and Technologies, p.4.

[165]Tang J, Miyamoto T, 2019. Numerical and experimental analysis of power generation characteristics in beam direction control of optical wireless power transmission with mirror. Proc 24th Microoptics Conf, p.164-165.

[166]Tang J, Matsunaga K, Miyamoto T, 2020. Numerical analysis of power generation characteristics in beam irradiation control of indoor OWPT system. Opt Rev, 27(2):‍170-176.

[167]Teeneti CR, Truscott TT, Beal DN, et al., 2021. Review of wireless charging systems for autonomous underwater vehicles. IEEE J Ocean Eng, 46(1):68-87.

[168]Todorov T, Gershon T, Gunawan O, et al., 2014. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Appl Phys Lett, 105(17):173902.

[169]Valdivia CE, Wilkins MM, Bouzazi B, et al., 2015. Five-volt vertically-stacked, single-cell GaAs photonic power converter. Proc SPIE 9358, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices IV, Article 93580E.

[170]van Giel B, Meuret Y, Thienpont H, 2007. Using a fly‘s eye integrator in efficient illumination engines with multiple light-emitting diode light sources. Opt Eng, 46(4):043001.

[171]Wang W, Zhang QQ, Lin H, et al., 2019. Wireless energy transmission channel modeling in resonant beam charging for IoT devices. IEEE Int Things J, 6(2):‍3976-3986.

[172]Wang X, Ruan BD, Lu MY, 2016. Retro-directive beamforming versus retro-reflective beamforming with applications in wireless power transmission. Progr Electromagn Res, 157:79-91.

[173]Weigl B, Grabherr M, Reiner G, et al., 1996. High efficiency selectively oxidised MBE grown vertical-cavity surface-emitting lasers. Electron Lett, 32(6):557-558.

[174]Welch DF, 2000. A brief history of high-power semiconductor lasers. IEEE J Sel Top Quant Electron, 6(6):‍1470-1477.

[175]Wilson K, Enoch M, 2000. Optical communications for deep space missions. IEEE Commun Mag, 38(8):134-139.

[176]Xiong ML, Liu MQ, Zhang QQ, et al., 2019. TDMA in adaptive resonant beam charging for IoT devices. IEEE Int Things J, 6(1):867-877.

[177]Xu PY, Zhang WJ, He ZY, 2020. Optical field manipulation for highly efficient wireless laser power transmission. Proc Int Conf on Microwave and Millimeter Wave Technology, p.1-3.

[178]Yamaguchi M, 2003. III‍–‍V compound multi-junction solar cells: present and future. Sol Energy Mater Sol Cells, 75(1-2):261-269.

[179]Yang X, 2016. Electrical Parasitic Bandwidth Limitations of Oxide-Free Lithographic Vertical-Cavity Surface-Emitting Lasers. PhD Thesis, University of Central Florida, Florida, USA.

[180]Yedavalli PS, Riihonen T, Wang XD, et al., 2017. Far-field RF wireless power transfer with blind adaptive beamforming for Internet of Things devices. IEEE Access, 5:‍1743-1752.

[181]Zeng Y, Zhang R, 2015. Optimized training design for wireless energy transfer. IEEE Trans Commun, 63(2):536-550.

[182]Zhang QQ, Shi XJ, Liu QW, et al., 2017. Adaptive distributed laser charging for efficient wireless power transfer. Proc IEEE 86th Vehicular Technology Conf, p.1-5.

[183]Zhang QQ, Fang W, Liu QW, et al., 2018. Distributed laser charging: a wireless power transfer approach. IEEE Int Things J, 5(5):3853-3864.

[184]Zhang QQ, Fang W, Xiong ML, et al., 2019a. Adaptive resonant beam charging for intelligent wireless power transfer. IEEE Int Things J, 6(1):1160-1172.

[185]Zhang QQ, Liu MQ, Lin X, et al., 2019b. Optimal resonant beam charging for electronic vehicles in Internet of Intelligent Vehicles. IEEE Int Things J, 6(1):6-14.

[186]Zhang R, Ho CK, 2013. MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wirel Commun, 12(5):1989-2001.

[187]Zhang R, Maunder RG, Hanzo L, 2015a. Wireless information and power transfer: from scientific hypothesis to engineering practice. IEEE Commun Mag, 53(8):99-105.

[188]Zhang R, Wang JH, Wang ZC, et al., 2015b. Visible light communications in heterogeneous networks: paving the way for user-centric design. IEEE Wirel Commun, 22(2):‍8-16.

[189]Zhou DL, Seurin JF, Xu GY, et al., 2014. Progress on vertical-cavity surface-emitting laser arrays for infrared illumination applications. Proc SPIE 9001, Vertical-Cavity Surface-Emitting Lasers XVIII, Article 90010E.

[190]Zhou DL, Seurin JF, Xu GY, et al., 2015. Progress on high-power high-brightness VCSELs and applications. Proc SPIE 9381, Vertical-Cavity Surface-Emitting Lasers XIX, Article 93810B.

[191]Zhou YH, Miyamoto T, 2019a. 200 mW-class LED-based optical wireless power transmission for compact IoT. Jpn J Appl Phys, 58(SJ):SJJC04.

[192]Zhou YH, Miyamoto T, 2019b. Optimized LED-based optical wireless power transmission system configuration for compact IoT. Proc 24th Microoptics Conf, p.154-155.

[193]Zhou YH, Miyamoto T, 2021. 400 mW class high output power from LED-array optical wireless power transmission system for compact IoT. IEICE Electron Expr, 18(2):20200405.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE