Full Text:   <3419>

Summary:  <598>

CLC number: TM131.4+1

On-line Access: 2014-01-07

Received: 2013-06-24

Revision Accepted: 2013-10-12

Crosschecked: 2013-12-19

Cited: 11

Clicked: 12648

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.1 P.51-62

http://doi.org/10.1631/jzus.C1300171


Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications


Author(s):  Jian-guang Shi, De-jun Li, Can-jun Yang

Affiliation(s):  State Key Laboratory of Fluid Power Transmission and Control, Hangzhou 310027, China

Corresponding email(s):   swortex@gmail.com, li_dejun@zju.edu.cn, ycj@zju.edu.cn

Key Words:  Inductive coupling power transfer (ICPT), Autonomous underwater vehicle (AUV) docking, Coupling coefficient, Resonant capacitance, Power transfer efficiency, Power loss, Eddy current


Jian-guang Shi, De-jun Li, Can-jun Yang. Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications[J]. Journal of Zhejiang University Science C, 2014, 15(1): 51-62.

@article{title="Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications",
author="Jian-guang Shi, De-jun Li, Can-jun Yang",
journal="Journal of Zhejiang University Science C",
volume="15",
number="1",
pages="51-62",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300171"
}

%0 Journal Article
%T Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications
%A Jian-guang Shi
%A De-jun Li
%A Can-jun Yang
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 1
%P 51-62
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300171

TY - JOUR
T1 - Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications
A1 - Jian-guang Shi
A1 - De-jun Li
A1 - Can-jun Yang
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 1
SP - 51
EP - 62
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300171


Abstract: 
We develop a new kind of underwater inductive coupling power transfer (ICPT) system to evaluate wireless power transfer in autonomous underwater vehicle (AUV) docking applications. Parameters that determine the performance of the system are systematically analyzed through mathematical methods. A circuit simulation model and a finite element analysis (FEA) simulation model are developed to study the power losses of the system, including copper loss in coils, semiconductor loss in circuits, and eddy current loss in transmission media. The characteristics of the power losses can provide guidelines to improve the efficiency of ICPT systems. Calculation results and simulation results are validated by relevant experiments of the prototype system. The output power of the prototype system is up to 45 W and the efficiency is up to 0.84. The preliminary results indicate that the efficiency will increase as the transmission power is raised by increasing the input voltage. When the output power reaches 500 W, the efficiency is expected to exceed 0.94. The efficiency can be further improved by choosing proper semiconductors and coils. The analysis methods prove effective in predicting the performance of similar ICPT systems and should be useful in designing new systems.

用于AUV接驳系统的水下感应式电能传输系统的设计与分析

研究目的:针对海水和高压环境,设计了一种稳定、高效的感应式电能传输装置,并在原型系统的基础上,对不同参数下系统的传输能力和效率进行分析,评估系统的电路损耗、线圈损耗和涡流损耗,探讨功率增大时系统效率的变化趋势和提高系统性能的方法。
创新方法:设计适用于AUV接驳系统的耦合线圈,并详细分析各设计参数对系统性能的影响。然后从损耗的角度对系统效率进行评估和预测,通过分析损耗的来源和特点,提出提高系统效率的方法。
研究手段:建立系统简化模型后,采用MATLAB编程进行数值运算,避免了繁琐的化简过程(且实际化简结果也十分复杂,难以找到规律)。用MATLAB编程运算的另一大优点是可以有效的对各设计参数进行分析,得到直观的图形结果。通过分析损耗来评估系统效率,对系统的损耗来源做全面的分析对比,有利于找到提升系统效率的方法。采用瞬态电路仿真对电路中的半导体元件和线圈的损耗进行分析,并且,采用ANSYS瞬态电磁场仿真对系统的涡流损耗进行分析。通过仿真和试验结果的对比验证了仿真手段的有效性。仿真方法也可以为新系统的参数设计提供参考。
重要结论:1. 采用次级串联谐振方式,线圈间的耦合系数对系统输出功率有影响,但对系统的效率影响很小。2. 可以通过降低频率或者采用更合适的线缆减小线圈损耗;电路损耗主要来自开关管和二极管的半导体损耗,通过选择更合适的元器件或者采用软开关降低半导体损耗;当腔体直径远小于线圈直径时,腔体中的涡流损耗很小,且海水中的涡流损耗相较于其他损耗也比较小。3. 通过调整线圈的电感和增大输入电压可以提高系统输出功率。并且通过增大电压的方式在系统功率升高的同时,系统效率也随之提高。

关键词:接驳系统电能传输,水下无线电能传输,感应式电能传输,耦合系数,效率,损耗,涡流

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Babic, S., Akyel, C., 2000. Improvement in calculation of the self- and mutual inductance of thin-wall solenoids and disk coils. IEEE Trans. Magn., 36(4):1970-1975.

[2]Dodd, C.V., Deeds, W.E., 1968. Analytical solutions to eddy current probe coil problems. J. Appl. Phys., 39(6):2829-2838.

[3]Dukju, A., Songcheol, H., 2013. A study on magnetic field repeater in wireless power transfer. IEEE Trans. Ind. Electron., 60(1):360-371.

[4]Ghahary, A., Cho, B.H., 1992. Design of transcutaneous energy transmission system using a series resonant converter. IEEE Trans. Ind. Electron., 7(2):261-269.

[5]Han, J., Asada, A., Ura, T., et al., 2007. Noncontact power supply for seafloor geodetic observing robot system. J. Mar. Sci. Tech., 12(3):183-189.

[6]Howe, B.M., McGinnis, T., Gobat, J., 2006. Moorings for ocean observatories: continuous and adaptive sampling. Scientific Submarine Cable Conf., p.172-181.

[7]Hurley, W.G., Gath, E., Breslin, J.G., 2000. Optimizing the AC resistance of multilayer transformer windings with arbitrary current waveforms. IEEE Trans. Power Electron., 15(2):369-376.

[8]Kim, Y.H., Jin, K.H., 2012. A contactless power transfer system using a series-series-parallel resonant converter. Int. J. Electron., 99(7):885-897.

[9]Kojiya, T., Sato, F., Matsuki, H., et al., 2004. Automatic power supply system to underwater vehicles utilizing non-contacting technology. Oceans, p.2341-2345.

[10]Li, Z., Li, D., Lin, L., et al., 2010. Design considerations for electromagnetic couplers in contactless power transmission systems for deep-sea applications. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(10):824-834.

[11]Low, Z.N., Chinga, R.A., Tseng, R., et al., 2009. Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system. IEEE Trans. Ind. Electron., 56(5):1801-1812.

[12]McEwen, R.S., Hobson, B.W., McBride, L., et al., 2008. Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Ocean. Eng., 33(4):550-562.

[13]Moulder, J.C., Tai, C.C., Larson, B.F., et al., 1998. Inductance of a coil on a thick ferromagnetic metal plate. IEEE Trans. Magn., 34(2):505-514.

[14]Ota, Y., Takura, T., Sato, F., et al., 2011. Impedance matching method about multiple contactless power feeding system for portable electronic devices. IEEE Trans. Magn., 47(10):4235-4237.

[15]Papastergiou, K.D., Macpherson, D.E., 2007a. An airborne radar power supply with contactless transfer of energy. Part I: rotating transformer. IEEE Trans. Ind. Electron., 54(5):2874-2884.

[16]Papastergiou, K.D., Macpherson, D.E., 2007b. An airborne radar power supply with contactless transfer of energy. Part II: converter design. IEEE Trans. Ind. Electron., 54(5):2885-2893.

[17]Podder, T., Sibenac, M., Bellingham, J., 2004. AUV docking system for sustainable science missions. IEEE Int. Conf. on Robotics & Automation, p.4478-4484.

[18]Pyle, D., Granger, R., Geoghegan, B., et al., 2012. Leveraging a large UUV platform with a docking station to enable forward basing and persistence for light weight AUVs. Oceans, p.1-8.

[19]Scott, K.L., 1930. Variation of the inductance of coils due to the magnetic shielding effect of eddy currents in the cores. Proc. IRE, 18(10):1750-1764.

[20]Sibue, J.R., Meunier, G., Ferrieux, J.P., et al., 2013. Modeling and computation of losses in conductors and magnetic cores of a large air gap transformer dedicated to contactless energy transfer. IEEE Trans. Magn., 49(1):586-590.

[21]Taheri, S., Gholami, A., Fofana, I., et al., 2011. Modeling and simulation of transformer loading capability and hot spot temperature under harmonic conditions. Electr. Power Syst. Res., 86:68-75.

[22]Villa, J.L., Sallan, J., Sanz Osorio, J.F., et al., 2012. High-misalignment tolerant compensation topology for ICPT systems. IEEE Trans. Ind. Electron., 59(2):945-951.

[23]Wang, C.S., Covic, G.A., Stielau, O.H., 2004. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron., 51(1):148-157.

[24]Zargham, M., Gulak, P.G., 2012. Maximum achievable efficiency in near-field coupled power-transfer systems. IEEE Trans. Biomed. Circ. Syst., 6(3):228-245.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE